See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/Hermes-2-Theta-Llama-3-8B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 7b193cdedcb3a4d4_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/7b193cdedcb3a4d4_train_data.json
type:
field_input: hypothesis_1
field_instruction: observation_1
field_output: observation_2
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 4
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/1a5fcc3e-11dc-43f5-998d-c464a25bc43c
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 1632
micro_batch_size: 2
mlflow_experiment_name: /tmp/7b193cdedcb3a4d4_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.02923361163731612
wandb_entity: null
wandb_mode: online
wandb_name: 62d23e8c-55f5-418d-b589-bc65040d1c84
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 62d23e8c-55f5-418d-b589-bc65040d1c84
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
1a5fcc3e-11dc-43f5-998d-c464a25bc43c
This model is a fine-tuned version of NousResearch/Hermes-2-Theta-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.6099
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 1632
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.9447 | 0.0000 | 1 | 5.1620 |
2.6567 | 0.0072 | 150 | 2.1266 |
2.2288 | 0.0145 | 300 | 2.0982 |
1.9998 | 0.0217 | 450 | 2.0340 |
2.1679 | 0.0289 | 600 | 1.9686 |
2.0032 | 0.0361 | 750 | 1.8891 |
1.9443 | 0.0434 | 900 | 1.8025 |
1.8202 | 0.0506 | 1050 | 1.7377 |
1.8367 | 0.0578 | 1200 | 1.6758 |
2.1615 | 0.0650 | 1350 | 1.6306 |
1.2492 | 0.0723 | 1500 | 1.6099 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 22
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for Romain-XV/1a5fcc3e-11dc-43f5-998d-c464a25bc43c
Base model
NousResearch/Meta-Llama-3-8B
Finetuned
NousResearch/Hermes-2-Pro-Llama-3-8B
Finetuned
NousResearch/Hermes-2-Theta-Llama-3-8B