File size: 8,459 Bytes
fccf749 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
#!/usr/bin/env python3
"""Train a MiniHF evaluator model (instruction tuned LoRA)."""
import argparse
from functools import partial
import os
from pathlib import Path
import sys
os.environ["BITSANDBYTES_NOWELCOME"] = "1"
import accelerate
import datasets
import datasets.distributed
import peft
import torch
from torch import optim
from torch.nn import functional as F
from torch.utils import data
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from tqdm import tqdm
print = tqdm.external_write_mode()(print)
def batch_to_tensors(batch, device="cpu"):
batch = [item["input_ids"] for item in batch]
seq_len = max(len(x) for x in batch)
input_ids = torch.zeros(len(batch), seq_len, dtype=torch.long, device=device)
attention_mask = torch.zeros(len(batch), seq_len, dtype=torch.long, device=device)
for i, x in enumerate(batch):
input_ids[i, : len(x)] = torch.tensor(x, dtype=torch.long, device=device)
attention_mask[i, : len(x)] = 1
return input_ids, attention_mask
def weighted_mean(x, w=None, dim=None, keepdim=False, dtype=None):
w = x.new_tensor(1.0) if w is None else w
w = w.expand_as(x)
dim = tuple(range(x.ndim)) if dim is None else dim
num = torch.sum(x * w, dim=dim, keepdim=keepdim, dtype=dtype)
denom = torch.sum(w, dim=dim, keepdim=keepdim, dtype=dtype)
return num / denom
class EndlessHFDataset(data.IterableDataset):
def __init__(self, dataset):
super().__init__()
self.dataset = dataset
def __iter__(self):
while True:
yield from self.dataset
self.dataset.set_epoch(self.dataset._epoch + 1)
def main():
parser = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("--batch-size", type=int, default=4, help="batch size per process")
parser.add_argument("--examples", type=int, default=100000, help="train for n examples")
parser.add_argument("--output-dir", type=Path, default="evaluator", help="output directory")
parser.add_argument("--save-every", type=int, default=10000, help="save every n examples")
args = parser.parse_args()
dataset_seed = 100
lora_rank = 32
lr = 1e-4
max_len = 2048
model_name = "openlm-research/open_llama_7b"
# Initialize Accelerate
accelerator = accelerate.Accelerator(mixed_precision="bf16", dispatch_batches=False)
device = accelerator.device
print0 = accelerator.on_local_main_process(print)
# Load tokenizer
print0(f"### Loading tokenizer: {model_name}", file=sys.stderr)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
tokenizer.pad_token = tokenizer.eos_token
# Load model
print0(f"### Loading model: {model_name}", file=sys.stderr)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
)
with accelerator.main_process_first():
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto" if accelerator.num_processes == 1 else {"": device},
quantization_config=bnb_config,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
)
accelerator.wait_for_everyone()
# Set up the LoRA
print0("### Setting up the LoRA", file=sys.stderr)
peft_config = peft.LoraConfig(
peft.TaskType.CAUSAL_LM,
inference_mode=False,
r=lora_rank,
lora_alpha=8,
lora_dropout=0.0,
target_modules=[
"self_attn.q_proj",
"self_attn.k_proj",
"self_attn.v_proj",
"self_attn.o_proj",
"mlp.gate_proj",
"mlp.up_proj",
"mlp.down_proj",
"lm_head",
],
)
model = peft.get_peft_model(model, peft_config)
accelerator.wait_for_everyone()
# Set up the model
model.train()
model.gradient_checkpointing_enable()
model.enable_input_require_grads()
if accelerator.is_local_main_process:
model.print_trainable_parameters()
# Dataset helper functions
def combine_flan(row):
return row["inputs"] + "<|end|>" + row["targets"] + tokenizer.eos_token
def combine_dolly(row):
return (
row["context"]
+ "\n\n"
+ row["instruction"]
+ "<|end|>"
+ row["response"]
+ tokenizer.eos_token
)
def to_tokens(combine_fn, row):
return tokenizer(combine_fn(row))
def exclude_too_long(row):
return len(row["input_ids"]) <= max_len
# Load dataset
print0("### Loading datasets", file=sys.stderr)
with accelerator.main_process_first():
dataset_1 = datasets.load_dataset("Muennighoff/flan", streaming=True)
dataset_2 = datasets.load_dataset("databricks/databricks-dolly-15k", streaming=True)
accelerator.wait_for_everyone()
dataset_1 = dataset_1["train"].map(partial(to_tokens, combine_flan))
dataset_2 = dataset_2["train"].map(partial(to_tokens, combine_dolly))
dataset = (
datasets.interleave_datasets([dataset_1, dataset_2], probabilities=[0.9, 0.1])
.filter(exclude_too_long)
.shuffle(seed=dataset_seed)
.select_columns(["input_ids"])
)
dataset = datasets.distributed.split_dataset_by_node(
dataset, accelerator.process_index, accelerator.num_processes
)
dataloader = data.DataLoader(
EndlessHFDataset(dataset),
batch_size=args.batch_size,
collate_fn=batch_to_tensors,
drop_last=True,
)
# Set up optimizer
opt = optim.Adam(model.parameters(), lr=lr, betas=(0.9, 0.99))
# Wrap objects
model, opt, dataloader = accelerator.prepare(model, opt, dataloader)
# Test max sequence length
print0("### Testing max sequence length", file=sys.stderr)
input_ids = torch.zeros([args.batch_size, max_len], dtype=torch.long, device=device)
attention_mask = torch.ones([args.batch_size, max_len], dtype=torch.long, device=device)
outputs = model(input_ids, attention_mask=attention_mask, use_cache=False)
accelerator.backward(outputs.logits.sum() * 0)
opt.zero_grad()
torch.cuda.empty_cache()
def save_model():
print0("### Saving model", file=sys.stderr)
accelerator.wait_for_everyone()
if accelerator.is_main_process:
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(args.output_dir, safe_serialization=True)
tokenizer.save_pretrained(args.output_dir)
# Train
print0("### Training", file=sys.stderr)
examples = 0
last_save = 0
pbar = tqdm(
disable=not accelerator.is_local_main_process,
total=args.examples,
unit="ex",
smoothing=0.01,
)
try:
for batch in dataloader:
input_ids, attention_mask = batch
with accelerator.accumulate(model):
# Forward pass
outputs = model(
input_ids[:, :-1],
attention_mask=attention_mask[:, :-1],
use_cache=False,
)
losses = F.cross_entropy(
outputs.logits.transpose(-1, -2),
input_ids[:, 1:],
reduction="none",
)
mask = attention_mask[:, :-1] * attention_mask[:, 1:]
loss = weighted_mean(losses, mask, dtype=torch.float32)
# Backward pass and optimizer step
accelerator.backward(loss)
opt.step()
opt.zero_grad()
global_batch_size = args.batch_size * accelerator.num_processes
examples += global_batch_size
pbar.update(global_batch_size)
global_loss = accelerator.reduce(loss, "mean")
print0(f"examples: {examples}, loss: {global_loss.item():g}")
if examples >= args.examples:
save_model()
break
if examples - last_save >= args.save_every:
save_model()
last_save += args.save_every
except KeyboardInterrupt:
pass
finally:
pbar.close()
if __name__ == "__main__":
main()
|