RiversHaveWings commited on
Commit
fccf749
1 Parent(s): 591afb3

Initial commit

Browse files
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md CHANGED
@@ -1,3 +1,32 @@
1
  ---
 
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: peft
3
  license: apache-2.0
4
  ---
5
+ # minihf_evaluator_openllama_7b
6
+
7
+ `minihf_evaluator_openllama_7b` is a LoRA instruct fine-tune of [OpenLLaMA 7B](https://huggingface.co/openlm-research/open_llama_7b).
8
+
9
+ The sequence `<|end|>` was used to separate the prompt and response. The correct way to prompt the model is: `Does 2 + 2 = 4?<|end|>`. The tokenizer will prepend a BOS token (`<s>`) by default. The response will end with an EOS token (`</s>`).
10
+
11
+ ## Training procedure
12
+
13
+ `minihf_evaluator_openllama_7b` was fine-tuned for 100,000 examples on 90% [Muennighoff/flan](https://huggingface.co/datasets/Muennighoff/flan) / 10% [databricks/databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) using batch size 4 per GPU on 8 40GB A100 GPUs. Examples where the prompt and response would not fit into 2,048 tokens were dropped. The fine-tuning was done using the following command:
14
+
15
+ ```bash
16
+ accelerate launch make_evaluator.py --output-dir minihf_evaluator_openllama_7b
17
+ ```
18
+
19
+ The following `bitsandbytes` quantization config was used during training:
20
+ - load_in_8bit: False
21
+ - load_in_4bit: True
22
+ - llm_int8_threshold: 6.0
23
+ - llm_int8_skip_modules: None
24
+ - llm_int8_enable_fp32_cpu_offload: False
25
+ - llm_int8_has_fp16_weight: False
26
+ - bnb_4bit_quant_type: nf4
27
+ - bnb_4bit_use_double_quant: True
28
+ - bnb_4bit_compute_dtype: bfloat16
29
+
30
+ ### Framework versions
31
+
32
+ - PEFT 0.4.0.dev0
adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "base_model_name_or_path": "openlm-research/open_llama_7b",
3
+ "bias": "none",
4
+ "fan_in_fan_out": false,
5
+ "inference_mode": true,
6
+ "init_lora_weights": true,
7
+ "layers_pattern": null,
8
+ "layers_to_transform": null,
9
+ "lora_alpha": 8,
10
+ "lora_dropout": 0.0,
11
+ "modules_to_save": null,
12
+ "peft_type": "LORA",
13
+ "r": 32,
14
+ "revision": null,
15
+ "target_modules": [
16
+ "self_attn.q_proj",
17
+ "self_attn.k_proj",
18
+ "self_attn.v_proj",
19
+ "self_attn.o_proj",
20
+ "mlp.gate_proj",
21
+ "mlp.up_proj",
22
+ "mlp.down_proj",
23
+ "lm_head"
24
+ ],
25
+ "task_type": null
26
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a4a1be941defab8d86563b05e463faca7e1b21b8a81659649dedbe24ad780c4
3
+ size 324496576
make_evaluator.py ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+
3
+ """Train a MiniHF evaluator model (instruction tuned LoRA)."""
4
+
5
+ import argparse
6
+ from functools import partial
7
+ import os
8
+ from pathlib import Path
9
+ import sys
10
+
11
+ os.environ["BITSANDBYTES_NOWELCOME"] = "1"
12
+
13
+ import accelerate
14
+ import datasets
15
+ import datasets.distributed
16
+ import peft
17
+ import torch
18
+ from torch import optim
19
+ from torch.nn import functional as F
20
+ from torch.utils import data
21
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
22
+ from tqdm import tqdm
23
+
24
+ print = tqdm.external_write_mode()(print)
25
+
26
+
27
+ def batch_to_tensors(batch, device="cpu"):
28
+ batch = [item["input_ids"] for item in batch]
29
+ seq_len = max(len(x) for x in batch)
30
+ input_ids = torch.zeros(len(batch), seq_len, dtype=torch.long, device=device)
31
+ attention_mask = torch.zeros(len(batch), seq_len, dtype=torch.long, device=device)
32
+ for i, x in enumerate(batch):
33
+ input_ids[i, : len(x)] = torch.tensor(x, dtype=torch.long, device=device)
34
+ attention_mask[i, : len(x)] = 1
35
+ return input_ids, attention_mask
36
+
37
+
38
+ def weighted_mean(x, w=None, dim=None, keepdim=False, dtype=None):
39
+ w = x.new_tensor(1.0) if w is None else w
40
+ w = w.expand_as(x)
41
+ dim = tuple(range(x.ndim)) if dim is None else dim
42
+ num = torch.sum(x * w, dim=dim, keepdim=keepdim, dtype=dtype)
43
+ denom = torch.sum(w, dim=dim, keepdim=keepdim, dtype=dtype)
44
+ return num / denom
45
+
46
+
47
+ class EndlessHFDataset(data.IterableDataset):
48
+ def __init__(self, dataset):
49
+ super().__init__()
50
+ self.dataset = dataset
51
+
52
+ def __iter__(self):
53
+ while True:
54
+ yield from self.dataset
55
+ self.dataset.set_epoch(self.dataset._epoch + 1)
56
+
57
+
58
+ def main():
59
+ parser = argparse.ArgumentParser(
60
+ description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter
61
+ )
62
+ parser.add_argument("--batch-size", type=int, default=4, help="batch size per process")
63
+ parser.add_argument("--examples", type=int, default=100000, help="train for n examples")
64
+ parser.add_argument("--output-dir", type=Path, default="evaluator", help="output directory")
65
+ parser.add_argument("--save-every", type=int, default=10000, help="save every n examples")
66
+ args = parser.parse_args()
67
+
68
+ dataset_seed = 100
69
+ lora_rank = 32
70
+ lr = 1e-4
71
+ max_len = 2048
72
+ model_name = "openlm-research/open_llama_7b"
73
+
74
+ # Initialize Accelerate
75
+ accelerator = accelerate.Accelerator(mixed_precision="bf16", dispatch_batches=False)
76
+ device = accelerator.device
77
+ print0 = accelerator.on_local_main_process(print)
78
+
79
+ # Load tokenizer
80
+ print0(f"### Loading tokenizer: {model_name}", file=sys.stderr)
81
+ tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
82
+ tokenizer.pad_token = tokenizer.eos_token
83
+
84
+ # Load model
85
+ print0(f"### Loading model: {model_name}", file=sys.stderr)
86
+ bnb_config = BitsAndBytesConfig(
87
+ load_in_4bit=True,
88
+ bnb_4bit_compute_dtype=torch.bfloat16,
89
+ bnb_4bit_quant_type="nf4",
90
+ bnb_4bit_use_double_quant=True,
91
+ )
92
+ with accelerator.main_process_first():
93
+ model = AutoModelForCausalLM.from_pretrained(
94
+ model_name,
95
+ device_map="auto" if accelerator.num_processes == 1 else {"": device},
96
+ quantization_config=bnb_config,
97
+ torch_dtype=torch.bfloat16,
98
+ trust_remote_code=True,
99
+ )
100
+ accelerator.wait_for_everyone()
101
+
102
+ # Set up the LoRA
103
+ print0("### Setting up the LoRA", file=sys.stderr)
104
+ peft_config = peft.LoraConfig(
105
+ peft.TaskType.CAUSAL_LM,
106
+ inference_mode=False,
107
+ r=lora_rank,
108
+ lora_alpha=8,
109
+ lora_dropout=0.0,
110
+ target_modules=[
111
+ "self_attn.q_proj",
112
+ "self_attn.k_proj",
113
+ "self_attn.v_proj",
114
+ "self_attn.o_proj",
115
+ "mlp.gate_proj",
116
+ "mlp.up_proj",
117
+ "mlp.down_proj",
118
+ "lm_head",
119
+ ],
120
+ )
121
+ model = peft.get_peft_model(model, peft_config)
122
+ accelerator.wait_for_everyone()
123
+
124
+ # Set up the model
125
+ model.train()
126
+ model.gradient_checkpointing_enable()
127
+ model.enable_input_require_grads()
128
+ if accelerator.is_local_main_process:
129
+ model.print_trainable_parameters()
130
+
131
+ # Dataset helper functions
132
+ def combine_flan(row):
133
+ return row["inputs"] + "<|end|>" + row["targets"] + tokenizer.eos_token
134
+
135
+ def combine_dolly(row):
136
+ return (
137
+ row["context"]
138
+ + "\n\n"
139
+ + row["instruction"]
140
+ + "<|end|>"
141
+ + row["response"]
142
+ + tokenizer.eos_token
143
+ )
144
+
145
+ def to_tokens(combine_fn, row):
146
+ return tokenizer(combine_fn(row))
147
+
148
+ def exclude_too_long(row):
149
+ return len(row["input_ids"]) <= max_len
150
+
151
+ # Load dataset
152
+ print0("### Loading datasets", file=sys.stderr)
153
+ with accelerator.main_process_first():
154
+ dataset_1 = datasets.load_dataset("Muennighoff/flan", streaming=True)
155
+ dataset_2 = datasets.load_dataset("databricks/databricks-dolly-15k", streaming=True)
156
+ accelerator.wait_for_everyone()
157
+ dataset_1 = dataset_1["train"].map(partial(to_tokens, combine_flan))
158
+ dataset_2 = dataset_2["train"].map(partial(to_tokens, combine_dolly))
159
+ dataset = (
160
+ datasets.interleave_datasets([dataset_1, dataset_2], probabilities=[0.9, 0.1])
161
+ .filter(exclude_too_long)
162
+ .shuffle(seed=dataset_seed)
163
+ .select_columns(["input_ids"])
164
+ )
165
+ dataset = datasets.distributed.split_dataset_by_node(
166
+ dataset, accelerator.process_index, accelerator.num_processes
167
+ )
168
+ dataloader = data.DataLoader(
169
+ EndlessHFDataset(dataset),
170
+ batch_size=args.batch_size,
171
+ collate_fn=batch_to_tensors,
172
+ drop_last=True,
173
+ )
174
+
175
+ # Set up optimizer
176
+ opt = optim.Adam(model.parameters(), lr=lr, betas=(0.9, 0.99))
177
+
178
+ # Wrap objects
179
+ model, opt, dataloader = accelerator.prepare(model, opt, dataloader)
180
+
181
+ # Test max sequence length
182
+ print0("### Testing max sequence length", file=sys.stderr)
183
+ input_ids = torch.zeros([args.batch_size, max_len], dtype=torch.long, device=device)
184
+ attention_mask = torch.ones([args.batch_size, max_len], dtype=torch.long, device=device)
185
+ outputs = model(input_ids, attention_mask=attention_mask, use_cache=False)
186
+ accelerator.backward(outputs.logits.sum() * 0)
187
+ opt.zero_grad()
188
+ torch.cuda.empty_cache()
189
+
190
+ def save_model():
191
+ print0("### Saving model", file=sys.stderr)
192
+ accelerator.wait_for_everyone()
193
+ if accelerator.is_main_process:
194
+ unwrapped_model = accelerator.unwrap_model(model)
195
+ unwrapped_model.save_pretrained(args.output_dir, safe_serialization=True)
196
+ tokenizer.save_pretrained(args.output_dir)
197
+
198
+ # Train
199
+ print0("### Training", file=sys.stderr)
200
+ examples = 0
201
+ last_save = 0
202
+ pbar = tqdm(
203
+ disable=not accelerator.is_local_main_process,
204
+ total=args.examples,
205
+ unit="ex",
206
+ smoothing=0.01,
207
+ )
208
+
209
+ try:
210
+ for batch in dataloader:
211
+ input_ids, attention_mask = batch
212
+ with accelerator.accumulate(model):
213
+ # Forward pass
214
+ outputs = model(
215
+ input_ids[:, :-1],
216
+ attention_mask=attention_mask[:, :-1],
217
+ use_cache=False,
218
+ )
219
+ losses = F.cross_entropy(
220
+ outputs.logits.transpose(-1, -2),
221
+ input_ids[:, 1:],
222
+ reduction="none",
223
+ )
224
+ mask = attention_mask[:, :-1] * attention_mask[:, 1:]
225
+ loss = weighted_mean(losses, mask, dtype=torch.float32)
226
+
227
+ # Backward pass and optimizer step
228
+ accelerator.backward(loss)
229
+ opt.step()
230
+ opt.zero_grad()
231
+
232
+ global_batch_size = args.batch_size * accelerator.num_processes
233
+ examples += global_batch_size
234
+ pbar.update(global_batch_size)
235
+
236
+ global_loss = accelerator.reduce(loss, "mean")
237
+ print0(f"examples: {examples}, loss: {global_loss.item():g}")
238
+
239
+ if examples >= args.examples:
240
+ save_model()
241
+ break
242
+
243
+ if examples - last_save >= args.save_every:
244
+ save_model()
245
+ last_save += args.save_every
246
+
247
+ except KeyboardInterrupt:
248
+ pass
249
+
250
+ finally:
251
+ pbar.close()
252
+
253
+
254
+ if __name__ == "__main__":
255
+ main()
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": true,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab1b681ec7fc02fed5edd3026687d7a692a918c4dd8e150ca2e3994a6229843b
3
+ size 534194
tokenizer_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<s>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "model_max_length": 2048,
22
+ "pad_token": null,
23
+ "sp_model_kwargs": {},
24
+ "tokenizer_class": "LlamaTokenizer",
25
+ "unk_token": {
26
+ "__type": "AddedToken",
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": true,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }