File size: 4,661 Bytes
bf9d77d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9092f3f
bf9d77d
9092f3f
 
 
 
 
 
 
 
 
bf9d77d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9092f3f
bf9d77d
 
 
9092f3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf9d77d
 
 
 
62106cc
bf9d77d
62106cc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: zephyr-7b-dpo-full
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# zephyr-7b-dpo-full

This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6824
- Rewards/chosen: -4.2277
- Rewards/rejected: -7.2864
- Rewards/accuracies: 0.7773
- Rewards/margins: 3.0587
- Logps/rejected: -408.3961
- Logps/chosen: -347.1476
- Logits/rejected: -0.8310
- Logits/chosen: -1.2135

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Logits/chosen | Logits/rejected | Logps/chosen | Logps/rejected | Validation Loss | Rewards/accuracies | Rewards/chosen | Rewards/margins | Rewards/rejected |
|:-------------:|:-----:|:----:|:-------------:|:---------------:|:------------:|:--------------:|:---------------:|:------------------:|:--------------:|:---------------:|:----------------:|
| 0.582         | 0.21  | 100  | -2.5812       | -2.5431         | -254.2386    | -263.2876      | 0.5878          | 0.7188             | 0.4177         | 0.4488          | -0.0310          |
| 0.558         | 0.42  | 200  | -2.3893       | -2.3398         | -261.4734    | -280.4191      | 0.5196          | 0.7773             | 0.0560         | 0.9436          | -0.8876          |
| 0.4914        | 0.63  | 300  | -2.3653       | -2.3039         | -264.2936    | -286.6201      | 0.5110          | 0.7656             | -0.0850        | 1.1126          | -1.1976          |
| 0.4922        | 0.84  | 400  | -2.3145       | -2.2570         | -263.2854    | -285.4248      | 0.5095          | 0.7852             | -0.0346        | 1.1033          | -1.1379          |
| 0.1908        | 1.05  | 500  | -2.2442       | -2.1660         | -269.8426    | -300.6474      | 0.5179          | 0.7852             | -0.3625        | 1.5366          | -1.8990          |
| 0.1675        | 1.26  | 600  | -2.2220       | -2.1249         | -287.2300    | -324.0812      | 0.5377          | 0.8008             | -1.2318        | 1.8389          | -3.0707          |
| 0.1567        | 1.46  | 700  | -2.0453       | -1.9285         | -298.7820    | -333.3354      | 0.5348          | 0.7891             | -1.8094        | 1.7240          | -3.5334          |
| 0.1475        | 1.67  | 800  | -2.2409       | -2.1202         | -296.3533    | -332.4951      | 0.5382          | 0.8008             | -1.6880        | 1.8034          | -3.4914          |
| 0.1422        | 1.88  | 900  | -2.1980       | -2.0630         | -296.0324    | -335.6016      | 0.5518          | 0.7852             | -1.6719        | 1.9748          | -3.6467          |
| 0.044         | 2.09  | 1000 | -1.7406       | -1.4629         | -316.4520    | -365.4959      | 0.6058          | 0.7891             | -2.6929        | 2.4485          | -5.1414          |
| 0.0307        | 2.3   | 1100 | -1.3310       | -0.9162         | -337.0383    | -397.1617      | 0.6700          | 0.7695             | -3.7222        | 3.0025          | -6.7247          |
| 0.0317        | 2.51  | 1200 | 0.6711        | -3.9616         | -6.9639      | 0.7773         | 3.0023          | -401.9448          | -341.8261      | -0.9227         | -1.2927          |
| 0.0264        | 2.72  | 1300 | 0.6778        | -4.2314         | -7.2584      | 0.7773         | 3.0270          | -407.8352          | -347.2216      | -0.8370         | -1.2190          |
| 0.0343        | 2.93  | 1400 | 0.6824        | -4.2277         | -7.2864      | 0.7773         | 3.0587          | -408.3961          | -347.1476      | -0.8310         | -1.2135          |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.2