File size: 6,515 Bytes
d2f464f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
Quantization made by Richard Erkhov.

[Github](https://github.com/RichardErkhov)

[Discord](https://discord.gg/pvy7H8DZMG)

[Request more models](https://github.com/RichardErkhov/quant_request)


Qwen2-0.5B-DPO - GGUF
- Model creator: https://huggingface.co/trl-lib/
- Original model: https://huggingface.co/trl-lib/Qwen2-0.5B-DPO/


| Name | Quant method | Size |
| ---- | ---- | ---- |
| [Qwen2-0.5B-DPO.Q2_K.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q2_K.gguf) | Q2_K | 0.32GB |
| [Qwen2-0.5B-DPO.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.IQ3_XS.gguf) | IQ3_XS | 0.32GB |
| [Qwen2-0.5B-DPO.IQ3_S.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.IQ3_S.gguf) | IQ3_S | 0.32GB |
| [Qwen2-0.5B-DPO.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q3_K_S.gguf) | Q3_K_S | 0.32GB |
| [Qwen2-0.5B-DPO.IQ3_M.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.IQ3_M.gguf) | IQ3_M | 0.32GB |
| [Qwen2-0.5B-DPO.Q3_K.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q3_K.gguf) | Q3_K | 0.33GB |
| [Qwen2-0.5B-DPO.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q3_K_M.gguf) | Q3_K_M | 0.33GB |
| [Qwen2-0.5B-DPO.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q3_K_L.gguf) | Q3_K_L | 0.34GB |
| [Qwen2-0.5B-DPO.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.IQ4_XS.gguf) | IQ4_XS | 0.33GB |
| [Qwen2-0.5B-DPO.Q4_0.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q4_0.gguf) | Q4_0 | 0.33GB |
| [Qwen2-0.5B-DPO.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.IQ4_NL.gguf) | IQ4_NL | 0.33GB |
| [Qwen2-0.5B-DPO.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q4_K_S.gguf) | Q4_K_S | 0.36GB |
| [Qwen2-0.5B-DPO.Q4_K.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q4_K.gguf) | Q4_K | 0.37GB |
| [Qwen2-0.5B-DPO.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q4_K_M.gguf) | Q4_K_M | 0.37GB |
| [Qwen2-0.5B-DPO.Q4_1.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q4_1.gguf) | Q4_1 | 0.35GB |
| [Qwen2-0.5B-DPO.Q5_0.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q5_0.gguf) | Q5_0 | 0.37GB |
| [Qwen2-0.5B-DPO.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q5_K_S.gguf) | Q5_K_S | 0.38GB |
| [Qwen2-0.5B-DPO.Q5_K.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q5_K.gguf) | Q5_K | 0.39GB |
| [Qwen2-0.5B-DPO.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q5_K_M.gguf) | Q5_K_M | 0.39GB |
| [Qwen2-0.5B-DPO.Q5_1.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q5_1.gguf) | Q5_1 | 0.39GB |
| [Qwen2-0.5B-DPO.Q6_K.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q6_K.gguf) | Q6_K | 0.47GB |
| [Qwen2-0.5B-DPO.Q8_0.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q8_0.gguf) | Q8_0 | 0.49GB |




Original model description:
---
base_model: Qwen/Qwen2-0.5B-Instruct
datasets: trl-lib/Capybara-Preferences
library_name: transformers
model_name: dpo-qwen2
tags:
- generated_from_trainer
- trl
- dpo
licence: license
---

# Model Card for dpo-qwen2

This model is a fine-tuned version of [Qwen/Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) on the [trl-lib/Capybara-Preferences](https://huggingface.co/datasets/trl-lib/Capybara-Preferences) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).

## Quick start

```python
from transformers import pipeline

question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="qgallouedec/dpo-qwen2", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```

## Training procedure

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/huggingface/trl/runs/8g0pylqi)

This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).

### Framework versions

- TRL: 0.12.0.dev0
- Transformers: 4.45.0.dev0
- Pytorch: 2.4.1
- Datasets: 3.0.0
- Tokenizers: 0.19.1

## Citations

Cite DPO as:

```bibtex
@inproceedings{rafailov2023direct,
    title        = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
    author       = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
    year         = 2023,
    booktitle    = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
    url          = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
    editor       = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
}
```

Cite TRL as:
    
```bibtex
@misc{vonwerra2022trl,
	title        = {{TRL: Transformer Reinforcement Learning}},
	author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
	year         = 2020,
	journal      = {GitHub repository},
	publisher    = {GitHub},
	howpublished = {\url{https://github.com/huggingface/trl}}
}
```