RichardErkhov commited on
Commit
d2f464f
·
verified ·
1 Parent(s): a502a46

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +113 -0
README.md ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ Qwen2-0.5B-DPO - GGUF
11
+ - Model creator: https://huggingface.co/trl-lib/
12
+ - Original model: https://huggingface.co/trl-lib/Qwen2-0.5B-DPO/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [Qwen2-0.5B-DPO.Q2_K.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q2_K.gguf) | Q2_K | 0.32GB |
18
+ | [Qwen2-0.5B-DPO.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.IQ3_XS.gguf) | IQ3_XS | 0.32GB |
19
+ | [Qwen2-0.5B-DPO.IQ3_S.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.IQ3_S.gguf) | IQ3_S | 0.32GB |
20
+ | [Qwen2-0.5B-DPO.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q3_K_S.gguf) | Q3_K_S | 0.32GB |
21
+ | [Qwen2-0.5B-DPO.IQ3_M.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.IQ3_M.gguf) | IQ3_M | 0.32GB |
22
+ | [Qwen2-0.5B-DPO.Q3_K.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q3_K.gguf) | Q3_K | 0.33GB |
23
+ | [Qwen2-0.5B-DPO.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q3_K_M.gguf) | Q3_K_M | 0.33GB |
24
+ | [Qwen2-0.5B-DPO.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q3_K_L.gguf) | Q3_K_L | 0.34GB |
25
+ | [Qwen2-0.5B-DPO.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.IQ4_XS.gguf) | IQ4_XS | 0.33GB |
26
+ | [Qwen2-0.5B-DPO.Q4_0.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q4_0.gguf) | Q4_0 | 0.33GB |
27
+ | [Qwen2-0.5B-DPO.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.IQ4_NL.gguf) | IQ4_NL | 0.33GB |
28
+ | [Qwen2-0.5B-DPO.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q4_K_S.gguf) | Q4_K_S | 0.36GB |
29
+ | [Qwen2-0.5B-DPO.Q4_K.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q4_K.gguf) | Q4_K | 0.37GB |
30
+ | [Qwen2-0.5B-DPO.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q4_K_M.gguf) | Q4_K_M | 0.37GB |
31
+ | [Qwen2-0.5B-DPO.Q4_1.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q4_1.gguf) | Q4_1 | 0.35GB |
32
+ | [Qwen2-0.5B-DPO.Q5_0.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q5_0.gguf) | Q5_0 | 0.37GB |
33
+ | [Qwen2-0.5B-DPO.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q5_K_S.gguf) | Q5_K_S | 0.38GB |
34
+ | [Qwen2-0.5B-DPO.Q5_K.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q5_K.gguf) | Q5_K | 0.39GB |
35
+ | [Qwen2-0.5B-DPO.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q5_K_M.gguf) | Q5_K_M | 0.39GB |
36
+ | [Qwen2-0.5B-DPO.Q5_1.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q5_1.gguf) | Q5_1 | 0.39GB |
37
+ | [Qwen2-0.5B-DPO.Q6_K.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q6_K.gguf) | Q6_K | 0.47GB |
38
+ | [Qwen2-0.5B-DPO.Q8_0.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-DPO-gguf/blob/main/Qwen2-0.5B-DPO.Q8_0.gguf) | Q8_0 | 0.49GB |
39
+
40
+
41
+
42
+
43
+ Original model description:
44
+ ---
45
+ base_model: Qwen/Qwen2-0.5B-Instruct
46
+ datasets: trl-lib/Capybara-Preferences
47
+ library_name: transformers
48
+ model_name: dpo-qwen2
49
+ tags:
50
+ - generated_from_trainer
51
+ - trl
52
+ - dpo
53
+ licence: license
54
+ ---
55
+
56
+ # Model Card for dpo-qwen2
57
+
58
+ This model is a fine-tuned version of [Qwen/Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) on the [trl-lib/Capybara-Preferences](https://huggingface.co/datasets/trl-lib/Capybara-Preferences) dataset.
59
+ It has been trained using [TRL](https://github.com/huggingface/trl).
60
+
61
+ ## Quick start
62
+
63
+ ```python
64
+ from transformers import pipeline
65
+
66
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
67
+ generator = pipeline("text-generation", model="qgallouedec/dpo-qwen2", device="cuda")
68
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
69
+ print(output["generated_text"])
70
+ ```
71
+
72
+ ## Training procedure
73
+
74
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/huggingface/trl/runs/8g0pylqi)
75
+
76
+ This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).
77
+
78
+ ### Framework versions
79
+
80
+ - TRL: 0.12.0.dev0
81
+ - Transformers: 4.45.0.dev0
82
+ - Pytorch: 2.4.1
83
+ - Datasets: 3.0.0
84
+ - Tokenizers: 0.19.1
85
+
86
+ ## Citations
87
+
88
+ Cite DPO as:
89
+
90
+ ```bibtex
91
+ @inproceedings{rafailov2023direct,
92
+ title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
93
+ author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
94
+ year = 2023,
95
+ booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
96
+ url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
97
+ editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
98
+ }
99
+ ```
100
+
101
+ Cite TRL as:
102
+
103
+ ```bibtex
104
+ @misc{vonwerra2022trl,
105
+ title = {{TRL: Transformer Reinforcement Learning}},
106
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
107
+ year = 2020,
108
+ journal = {GitHub repository},
109
+ publisher = {GitHub},
110
+ howpublished = {\url{https://github.com/huggingface/trl}}
111
+ }
112
+ ```
113
+