YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

Mistral-7B-Instruct-v0.2-attention-sparsity-30 - GGUF

Name Quant method Size
Mistral-7B-Instruct-v0.2-attention-sparsity-30.Q2_K.gguf Q2_K 2.53GB
Mistral-7B-Instruct-v0.2-attention-sparsity-30.IQ3_XS.gguf IQ3_XS 2.81GB
Mistral-7B-Instruct-v0.2-attention-sparsity-30.IQ3_S.gguf IQ3_S 2.96GB
Mistral-7B-Instruct-v0.2-attention-sparsity-30.Q3_K_S.gguf Q3_K_S 2.95GB
Mistral-7B-Instruct-v0.2-attention-sparsity-30.IQ3_M.gguf IQ3_M 3.06GB
Mistral-7B-Instruct-v0.2-attention-sparsity-30.Q3_K.gguf Q3_K 3.28GB
Mistral-7B-Instruct-v0.2-attention-sparsity-30.Q3_K_M.gguf Q3_K_M 3.28GB
Mistral-7B-Instruct-v0.2-attention-sparsity-30.Q3_K_L.gguf Q3_K_L 3.56GB
Mistral-7B-Instruct-v0.2-attention-sparsity-30.IQ4_XS.gguf IQ4_XS 3.67GB
Mistral-7B-Instruct-v0.2-attention-sparsity-30.Q4_0.gguf Q4_0 3.83GB
Mistral-7B-Instruct-v0.2-attention-sparsity-30.IQ4_NL.gguf IQ4_NL 3.87GB
Mistral-7B-Instruct-v0.2-attention-sparsity-30.Q4_K_S.gguf Q4_K_S 3.86GB
Mistral-7B-Instruct-v0.2-attention-sparsity-30.Q4_K.gguf Q4_K 4.07GB
Mistral-7B-Instruct-v0.2-attention-sparsity-30.Q4_K_M.gguf Q4_K_M 4.07GB
Mistral-7B-Instruct-v0.2-attention-sparsity-30.Q4_1.gguf Q4_1 4.24GB
Mistral-7B-Instruct-v0.2-attention-sparsity-30.Q5_0.gguf Q5_0 4.65GB
Mistral-7B-Instruct-v0.2-attention-sparsity-30.Q5_K_S.gguf Q5_K_S 4.65GB
Mistral-7B-Instruct-v0.2-attention-sparsity-30.Q5_K.gguf Q5_K 4.78GB
Mistral-7B-Instruct-v0.2-attention-sparsity-30.Q5_K_M.gguf Q5_K_M 4.78GB
Mistral-7B-Instruct-v0.2-attention-sparsity-30.Q5_1.gguf Q5_1 5.07GB
Mistral-7B-Instruct-v0.2-attention-sparsity-30.Q6_K.gguf Q6_K 5.53GB
Mistral-7B-Instruct-v0.2-attention-sparsity-30.Q8_0.gguf Q8_0 7.17GB

Original model description:

license: apache-2.0 tags: - finetuned pipeline_tag: text-generation inference: false model-index: - name: Mistral-7B-Instruct-v0.2-attention-sparsity-30 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 62.97 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=notadib/Mistral-7B-Instruct-v0.2-attention-sparsity-30 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 84.71 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=notadib/Mistral-7B-Instruct-v0.2-attention-sparsity-30 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 60.49 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=notadib/Mistral-7B-Instruct-v0.2-attention-sparsity-30 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 67.49 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=notadib/Mistral-7B-Instruct-v0.2-attention-sparsity-30 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 77.98 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=notadib/Mistral-7B-Instruct-v0.2-attention-sparsity-30 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 39.42 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=notadib/Mistral-7B-Instruct-v0.2-attention-sparsity-30 name: Open LLM Leaderboard

Model Card for Mistral-7B-Instruct-v0.2

The Mistral-7B-Instruct-v0.2 Large Language Model (LLM) is an improved instruct fine-tuned version of Mistral-7B-Instruct-v0.1.

For full details of this model please read our paper and release blog post.

Instruction format

In order to leverage instruction fine-tuning, your prompt should be surrounded by [INST] and [/INST] tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.

E.g.

text = "<s>[INST] What is your favourite condiment? [/INST]"
"Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
"[INST] Do you have mayonnaise recipes? [/INST]"

This format is available as a chat template via the apply_chat_template() method:

from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")

messages = [
    {"role": "user", "content": "What is your favourite condiment?"},
    {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
    {"role": "user", "content": "Do you have mayonnaise recipes?"}
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])

Model Architecture

This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices:

  • Grouped-Query Attention
  • Sliding-Window Attention
  • Byte-fallback BPE tokenizer

Troubleshooting

  • If you see the following error:
Traceback (most recent call last):
File "", line 1, in
File "/transformers/models/auto/auto_factory.py", line 482, in from_pretrained
config, kwargs = AutoConfig.from_pretrained(
File "/transformers/models/auto/configuration_auto.py", line 1022, in from_pretrained
config_class = CONFIG_MAPPING[config_dict["model_type"]]
File "/transformers/models/auto/configuration_auto.py", line 723, in getitem
raise KeyError(key)
KeyError: 'mistral'

Installing transformers from source should solve the issue pip install git+https://github.com/huggingface/transformers

This should not be required after transformers-v4.33.4.

Limitations

The Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.

The Mistral AI Team

Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 65.51
AI2 Reasoning Challenge (25-Shot) 62.97
HellaSwag (10-Shot) 84.71
MMLU (5-Shot) 60.49
TruthfulQA (0-shot) 67.49
Winogrande (5-shot) 77.98
GSM8k (5-shot) 39.42
Downloads last month
0
GGUF
Model size
7.24B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.