RichardErkhov
commited on
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
bloom-560m-finetuned-sd-prompts - bnb 4bits
|
11 |
+
- Model creator: https://huggingface.co/mrm8488/
|
12 |
+
- Original model: https://huggingface.co/mrm8488/bloom-560m-finetuned-sd-prompts/
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
Original model description:
|
18 |
+
---
|
19 |
+
license: bigscience-bloom-rail-1.0
|
20 |
+
tags:
|
21 |
+
- generated_from_trainer
|
22 |
+
- stable-diffusion
|
23 |
+
- diffusion
|
24 |
+
model-index:
|
25 |
+
- name: bloom-560m-finetuned-sd-prompts
|
26 |
+
results: []
|
27 |
+
|
28 |
+
datasets:
|
29 |
+
- Gustavosta/Stable-Diffusion-Prompts
|
30 |
+
|
31 |
+
widget:
|
32 |
+
- text: "<s>Prompt: young, curly haired, redhead Natalie Portman as a"
|
33 |
+
- text: "<s>Prompt: a powerful energy woman, by alexander fedosav"
|
34 |
+
|
35 |
+
inference:
|
36 |
+
parameters:
|
37 |
+
eos_token_id: 2
|
38 |
+
max_length: 128
|
39 |
+
|
40 |
+
|
41 |
+
---
|
42 |
+
|
43 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
44 |
+
should probably proofread and complete it, then remove this comment. -->
|
45 |
+
|
46 |
+
# bloom-560m-finetuned-sd-prompts
|
47 |
+
|
48 |
+
This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) on the [Gustavosta/Stable-Diffusion-Prompts](https://huggingface.co/datasets/Gustavosta/Stable-Diffusion-Prompts) dataset.
|
49 |
+
It achieves the following results on the evaluation set:
|
50 |
+
- Loss: 0.8742
|
51 |
+
|
52 |
+
|
53 |
+
## Example of usage
|
54 |
+
|
55 |
+
```py
|
56 |
+
import torch
|
57 |
+
from transformers import BloomTokenizerFast, BloomForCausalLM
|
58 |
+
|
59 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
60 |
+
ckpt = 'mrm8488/bloom-560m-finetuned-sd-prompts'
|
61 |
+
|
62 |
+
tokenizer = BloomTokenizerFast.from_pretrained(ckpt)
|
63 |
+
model = BloomForCausalLM.from_pretrained(ckpt).to(device)
|
64 |
+
|
65 |
+
def generate_prompt(text):
|
66 |
+
inputs = tokenizer(text, return_tensors='pt')
|
67 |
+
input_ids = inputs.input_ids.to(device)
|
68 |
+
attention_mask = inputs.attention_mask.to(device)
|
69 |
+
output = model.generate(input_ids, attention_mask=attention_mask, repetition_penalty=1.05, max_length=2048, eos_token_id=tokenizer.eos_token_id)
|
70 |
+
|
71 |
+
return tokenizer.decode(output[0], skip_special_tokens=False)
|
72 |
+
|
73 |
+
text = "<s>Prompt: pikachu dinning in the eiffel tower"
|
74 |
+
|
75 |
+
generate_prompt(text)
|
76 |
+
|
77 |
+
# Output: <s>Prompt: pikachu dinning in the eiffel tower, intricate, elegant, highly detailed, digital painting, artstation, concept art, smooth, sharp focus, illustration, art by artgerm and greg rutkowski and alphonse mucha</s>
|
78 |
+
```
|
79 |
+
|
80 |
+
## Model description
|
81 |
+
|
82 |
+
More information needed
|
83 |
+
|
84 |
+
## Intended uses & limitations
|
85 |
+
|
86 |
+
More information needed
|
87 |
+
|
88 |
+
## Training and evaluation data
|
89 |
+
|
90 |
+
More information needed
|
91 |
+
|
92 |
+
## Training procedure
|
93 |
+
|
94 |
+
### Training hyperparameters
|
95 |
+
|
96 |
+
The following hyperparameters were used during training:
|
97 |
+
- learning_rate: 5e-05
|
98 |
+
- train_batch_size: 1
|
99 |
+
- eval_batch_size: 1
|
100 |
+
- seed: 42
|
101 |
+
- gradient_accumulation_steps: 4
|
102 |
+
- total_train_batch_size: 4
|
103 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
104 |
+
- lr_scheduler_type: linear
|
105 |
+
- num_epochs: 2
|
106 |
+
- mixed_precision_training: Native AMP
|
107 |
+
|
108 |
+
### Training results
|
109 |
+
|
110 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
111 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
112 |
+
| 2.6743 | 0.17 | 100 | 2.0891 |
|
113 |
+
| 1.8919 | 0.33 | 200 | 1.7191 |
|
114 |
+
| 1.5907 | 0.5 | 300 | 1.4454 |
|
115 |
+
| 1.3865 | 0.67 | 400 | 1.3247 |
|
116 |
+
| 1.2487 | 0.83 | 500 | 1.2150 |
|
117 |
+
| 1.1565 | 1.0 | 600 | 1.1031 |
|
118 |
+
| 0.896 | 1.17 | 700 | 1.0612 |
|
119 |
+
| 0.8389 | 1.33 | 800 | 0.9994 |
|
120 |
+
| 0.8071 | 1.5 | 900 | 0.9530 |
|
121 |
+
| 0.7628 | 1.67 | 1000 | 0.9206 |
|
122 |
+
| 0.7423 | 1.83 | 1100 | 0.8883 |
|
123 |
+
| 0.7155 | 2.0 | 1200 | 0.8742 |
|
124 |
+
|
125 |
+
|
126 |
+
### Framework versions
|
127 |
+
|
128 |
+
- Transformers 4.22.1
|
129 |
+
- Pytorch 1.12.1+cu113
|
130 |
+
- Datasets 2.5.1
|
131 |
+
- Tokenizers 0.12.1
|
132 |
+
|
133 |
+
|