File size: 1,912 Bytes
e17bf07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
tinyllama-1.1b-mt-dpo-full_LR5e-8_BS16_rmsprop_2epochs - AWQ
- Model creator: https://huggingface.co/martimfasantos/
- Original model: https://huggingface.co/martimfasantos/tinyllama-1.1b-mt-dpo-full_LR5e-8_BS16_rmsprop_2epochs/
Original model description:
---
license: apache-2.0
base_model: martimfasantos/tinyllama-1.1b-mt-sft-full
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- haoranxu/ALMA-R-Preference
model-index:
- name: tinyllama-1.1b-mt-dpo-full_LR5e-8_BS16_rmsprop_2epochs
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tinyllama-1.1b-mt-dpo-full_LR5e-8_BS16_rmsprop_2epochs
This model is a fine-tuned version of [martimfasantos/tinyllama-1.1b-mt-sft-full](https://huggingface.co/martimfasantos/tinyllama-1.1b-mt-sft-full) on the haoranxu/ALMA-R-Preference dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-08
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1
|