File size: 13,632 Bytes
90ad915
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
Quantization made by Richard Erkhov.

[Github](https://github.com/RichardErkhov)

[Discord](https://discord.gg/pvy7H8DZMG)

[Request more models](https://github.com/RichardErkhov/quant_request)


polyglot-math-4x7b - GGUF
- Model creator: https://huggingface.co/macadeliccc/
- Original model: https://huggingface.co/macadeliccc/polyglot-math-4x7b/


| Name | Quant method | Size |
| ---- | ---- | ---- |
| [polyglot-math-4x7b.Q2_K.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q2_K.gguf) | Q2_K | 8.24GB |
| [polyglot-math-4x7b.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.IQ3_XS.gguf) | IQ3_XS | 9.21GB |
| [polyglot-math-4x7b.IQ3_S.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.IQ3_S.gguf) | IQ3_S | 9.73GB |
| [polyglot-math-4x7b.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q3_K_S.gguf) | Q3_K_S | 9.72GB |
| [polyglot-math-4x7b.IQ3_M.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.IQ3_M.gguf) | IQ3_M | 9.92GB |
| [polyglot-math-4x7b.Q3_K.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q3_K.gguf) | Q3_K | 10.79GB |
| [polyglot-math-4x7b.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q3_K_M.gguf) | Q3_K_M | 10.79GB |
| [polyglot-math-4x7b.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q3_K_L.gguf) | Q3_K_L | 11.68GB |
| [polyglot-math-4x7b.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.IQ4_XS.gguf) | IQ4_XS | 12.15GB |
| [polyglot-math-4x7b.Q4_0.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q4_0.gguf) | Q4_0 | 12.69GB |
| [polyglot-math-4x7b.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.IQ4_NL.gguf) | IQ4_NL | 12.81GB |
| [polyglot-math-4x7b.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q4_K_S.gguf) | Q4_K_S | 12.8GB |
| [polyglot-math-4x7b.Q4_K.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q4_K.gguf) | Q4_K | 13.61GB |
| [polyglot-math-4x7b.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q4_K_M.gguf) | Q4_K_M | 13.61GB |
| [polyglot-math-4x7b.Q4_1.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q4_1.gguf) | Q4_1 | 14.09GB |
| [polyglot-math-4x7b.Q5_0.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q5_0.gguf) | Q5_0 | 15.48GB |
| [polyglot-math-4x7b.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q5_K_S.gguf) | Q5_K_S | 15.48GB |
| [polyglot-math-4x7b.Q5_K.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q5_K.gguf) | Q5_K | 15.96GB |
| [polyglot-math-4x7b.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q5_K_M.gguf) | Q5_K_M | 15.96GB |
| [polyglot-math-4x7b.Q5_1.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q5_1.gguf) | Q5_1 | 16.88GB |
| [polyglot-math-4x7b.Q6_K.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q6_K.gguf) | Q6_K | 18.46GB |
| [polyglot-math-4x7b.Q8_0.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q8_0.gguf) | Q8_0 | 23.9GB |




Original model description:
---
language:
- en
- zh
- ja
license: apache-2.0
model-index:
- name: polyglot-math-4x7b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 63.74
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/polyglot-math-4x7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 84.85
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/polyglot-math-4x7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 63.57
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/polyglot-math-4x7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 53.78
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/polyglot-math-4x7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 78.45
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/polyglot-math-4x7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 56.63
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/polyglot-math-4x7b
      name: Open LLM Leaderboard
---
# Polyglot-math-4x7b-24b

![polyglot](polyglot-math.png)

Polyglot-4x7b is a Mixture of Experts approach to a multilingual model.

The model is a merge of models that are capable of Chinese and Japanese output.

+ meta-math/MetaMath-Mistral-7B
+ oshizo/japanese-e5-mistral-7b_slerp
+ cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
+ s3nh/Mistral-7B-Evol-Instruct-Chinese

I fit the gsm8k evaluation for this model on 20GB of VRAM.

# Code Example 

Inference [Colab](https://colab.research.google.com/drive/1tYSb63IKZDsiQ5BIJU8Oc92phxugAmB3?usp=sharing)

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

def generate_response(prompt):
    """
    Generate a response from the model based on the input prompt.

    Args:
    prompt (str): Prompt for the model.

    Returns:
    str: The generated response from the model.
    """
    # Tokenize the input prompt
    inputs = tokenizer(prompt, return_tensors="pt")

    # Generate output tokens
    outputs = model.generate(**inputs, max_new_tokens=256, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)

    # Decode the generated tokens to a string
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)

    return response

# Load the model and tokenizer
model_id = "macadeliccc/polyglot-math-4x7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)

# Math prompts in different languages
english_math_prompt = "Explain the proof of Fermat's Last Theorem and its implications in number theory."
chinese_math_prompt = "解释费马大定理的证明及其在数论中的意义。"
japanese_math_prompt = "フェルマーの最終定理の証明と数論におけるその意義について説明してください。"

# Generate and print responses for each math prompt
print("English Math Response:")
print(generate_response(english_math_prompt), "\n")

print("Chinese Math Response:")
print(generate_response(chinese_math_prompt), "\n")

print("Japanese Math Response:")
print(generate_response(japanese_math_prompt), "\n")

```

## Example Output

**The math model was trained in english so it defaults to english, but it still understands the question and can translate the answer.
English: 

Explain the proof of Fermat's Last Theorem and its implications in number theory.

Fermat's Last Theorem (FLT) states that there are no non-trivial integer solutions to the equation $x^n + y^n = z^n$ for any integer $n \geq 3$. The proof of FLT was a long-standing problem in number theory, and it was finally proven in 1995 by Andrew Wiles.

The proof of FLT is quite complex and involves many different techniques and ideas from number theory, algebra, and analysis. The main idea behind the proof is to use elliptic curves and modular forms to construct a system of equations that can be used to show that there are no non-trivial integer solutions to the equation $x^n + y^n = z^n$ for any integer $n \geq 3$.

The implications of FLT in number theory are far-reaching. The proof of FLT relies on many different techniques and ideas from number theory, and it has led to the development of new techniques and ideas in the field.
  This is a simple implementation of the quicksort algorithm in python. The function `quicksort` takes an array as input and returns a sorted array. The algorithm works by selecting a pivot element from the array and partitioning the other elements into two sub-arrays, according to whether they are less than or greater than the pivot. The process is then repeated recursively on the sub-arrays until the entire array is sorted. 

Chinese Response:

  解释费马大定理的证明及其在数论中的意义。

Fermat's Last Theorem (FLT) is a statement in number theory that states that there are no non-trivial integer solutions to the equation $x^n + y^n = z^n$ for any integer $n \geq 3$.

The proof of FLT was a long-standing open problem in mathematics. In 1993, Andrew Wiles, a British mathematician, published a proof of FLT using the techniques of elliptic curves and modular forms.

The proof of FLT is considered one of the most important achievements in mathematics in the 20th century. It is a testament to the power of mathematics and the dedication of mathematicians to solve difficult problems.

The proof of FLT has also had a significant impact on the field of number theory. It has led to the development of new techniques and theorems, and has inspired further research in the field.

In summary, the proof of FLT is a significant achievement in mathematics that has had a profound impact on the field of number theory. It is a testament to the power of mathematics and the dedication of mathematicians 

Japanese Response: 

  フェルマーの最終定理の証明と数論におけるその意義について説明してください。

The Fermat's Last Theorem (FLT) is a statement in number theory that states that there are no non-trivial integer solutions to the equation $a^n + b^n = c^n$ for any positive integer $n$ greater than 2.

The proof of FLT was a long-standing open problem in mathematics. In 1993, Andrew Wiles, a British mathematician, published a proof of FLT using the techniques of elliptic curves and modular forms.

The proof of FLT is considered one of the most important achievements in mathematics in the 20th century. It is a prime example of the power of abstract algebra and number theory in solving difficult problems in mathematics.

The proof of FLT also has implications for other areas of mathematics, such as algebraic geometry and number theory. For example, the proof of FLT relies on the Taniyama-Shimura-Weil conjecture, which states that every elliptic curve is a modular form. This conjecture was proven by Wiles and his collaborators, and it has since been used to prove other theorems 



# Evaluations

|Tasks|Version|  Filter  |n-shot|  Metric   |Value |   |Stderr|
|-----|-------|----------|-----:|-----------|-----:|---|-----:|
|gsm8k|Yaml   |get-answer|     5|exact_match|0.5504|±  |0.0137|

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__polyglot-math-4x7b)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |66.84|
|AI2 Reasoning Challenge (25-Shot)|63.74|
|HellaSwag (10-Shot)              |84.85|
|MMLU (5-Shot)                    |63.57|
|TruthfulQA (0-shot)              |53.78|
|Winogrande (5-shot)              |78.45|
|GSM8k (5-shot)                   |56.63|