File size: 13,632 Bytes
90ad915 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
polyglot-math-4x7b - GGUF
- Model creator: https://huggingface.co/macadeliccc/
- Original model: https://huggingface.co/macadeliccc/polyglot-math-4x7b/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [polyglot-math-4x7b.Q2_K.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q2_K.gguf) | Q2_K | 8.24GB |
| [polyglot-math-4x7b.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.IQ3_XS.gguf) | IQ3_XS | 9.21GB |
| [polyglot-math-4x7b.IQ3_S.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.IQ3_S.gguf) | IQ3_S | 9.73GB |
| [polyglot-math-4x7b.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q3_K_S.gguf) | Q3_K_S | 9.72GB |
| [polyglot-math-4x7b.IQ3_M.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.IQ3_M.gguf) | IQ3_M | 9.92GB |
| [polyglot-math-4x7b.Q3_K.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q3_K.gguf) | Q3_K | 10.79GB |
| [polyglot-math-4x7b.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q3_K_M.gguf) | Q3_K_M | 10.79GB |
| [polyglot-math-4x7b.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q3_K_L.gguf) | Q3_K_L | 11.68GB |
| [polyglot-math-4x7b.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.IQ4_XS.gguf) | IQ4_XS | 12.15GB |
| [polyglot-math-4x7b.Q4_0.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q4_0.gguf) | Q4_0 | 12.69GB |
| [polyglot-math-4x7b.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.IQ4_NL.gguf) | IQ4_NL | 12.81GB |
| [polyglot-math-4x7b.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q4_K_S.gguf) | Q4_K_S | 12.8GB |
| [polyglot-math-4x7b.Q4_K.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q4_K.gguf) | Q4_K | 13.61GB |
| [polyglot-math-4x7b.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q4_K_M.gguf) | Q4_K_M | 13.61GB |
| [polyglot-math-4x7b.Q4_1.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q4_1.gguf) | Q4_1 | 14.09GB |
| [polyglot-math-4x7b.Q5_0.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q5_0.gguf) | Q5_0 | 15.48GB |
| [polyglot-math-4x7b.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q5_K_S.gguf) | Q5_K_S | 15.48GB |
| [polyglot-math-4x7b.Q5_K.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q5_K.gguf) | Q5_K | 15.96GB |
| [polyglot-math-4x7b.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q5_K_M.gguf) | Q5_K_M | 15.96GB |
| [polyglot-math-4x7b.Q5_1.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q5_1.gguf) | Q5_1 | 16.88GB |
| [polyglot-math-4x7b.Q6_K.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q6_K.gguf) | Q6_K | 18.46GB |
| [polyglot-math-4x7b.Q8_0.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q8_0.gguf) | Q8_0 | 23.9GB |
Original model description:
---
language:
- en
- zh
- ja
license: apache-2.0
model-index:
- name: polyglot-math-4x7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 63.74
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/polyglot-math-4x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 84.85
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/polyglot-math-4x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.57
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/polyglot-math-4x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 53.78
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/polyglot-math-4x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.45
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/polyglot-math-4x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 56.63
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/polyglot-math-4x7b
name: Open LLM Leaderboard
---
# Polyglot-math-4x7b-24b
![polyglot](polyglot-math.png)
Polyglot-4x7b is a Mixture of Experts approach to a multilingual model.
The model is a merge of models that are capable of Chinese and Japanese output.
+ meta-math/MetaMath-Mistral-7B
+ oshizo/japanese-e5-mistral-7b_slerp
+ cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
+ s3nh/Mistral-7B-Evol-Instruct-Chinese
I fit the gsm8k evaluation for this model on 20GB of VRAM.
# Code Example
Inference [Colab](https://colab.research.google.com/drive/1tYSb63IKZDsiQ5BIJU8Oc92phxugAmB3?usp=sharing)
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
def generate_response(prompt):
"""
Generate a response from the model based on the input prompt.
Args:
prompt (str): Prompt for the model.
Returns:
str: The generated response from the model.
"""
# Tokenize the input prompt
inputs = tokenizer(prompt, return_tensors="pt")
# Generate output tokens
outputs = model.generate(**inputs, max_new_tokens=256, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)
# Decode the generated tokens to a string
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Load the model and tokenizer
model_id = "macadeliccc/polyglot-math-4x7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)
# Math prompts in different languages
english_math_prompt = "Explain the proof of Fermat's Last Theorem and its implications in number theory."
chinese_math_prompt = "解释费马大定理的证明及其在数论中的意义。"
japanese_math_prompt = "フェルマーの最終定理の証明と数論におけるその意義について説明してください。"
# Generate and print responses for each math prompt
print("English Math Response:")
print(generate_response(english_math_prompt), "\n")
print("Chinese Math Response:")
print(generate_response(chinese_math_prompt), "\n")
print("Japanese Math Response:")
print(generate_response(japanese_math_prompt), "\n")
```
## Example Output
**The math model was trained in english so it defaults to english, but it still understands the question and can translate the answer.
English:
Explain the proof of Fermat's Last Theorem and its implications in number theory.
Fermat's Last Theorem (FLT) states that there are no non-trivial integer solutions to the equation $x^n + y^n = z^n$ for any integer $n \geq 3$. The proof of FLT was a long-standing problem in number theory, and it was finally proven in 1995 by Andrew Wiles.
The proof of FLT is quite complex and involves many different techniques and ideas from number theory, algebra, and analysis. The main idea behind the proof is to use elliptic curves and modular forms to construct a system of equations that can be used to show that there are no non-trivial integer solutions to the equation $x^n + y^n = z^n$ for any integer $n \geq 3$.
The implications of FLT in number theory are far-reaching. The proof of FLT relies on many different techniques and ideas from number theory, and it has led to the development of new techniques and ideas in the field.
This is a simple implementation of the quicksort algorithm in python. The function `quicksort` takes an array as input and returns a sorted array. The algorithm works by selecting a pivot element from the array and partitioning the other elements into two sub-arrays, according to whether they are less than or greater than the pivot. The process is then repeated recursively on the sub-arrays until the entire array is sorted.
Chinese Response:
解释费马大定理的证明及其在数论中的意义。
Fermat's Last Theorem (FLT) is a statement in number theory that states that there are no non-trivial integer solutions to the equation $x^n + y^n = z^n$ for any integer $n \geq 3$.
The proof of FLT was a long-standing open problem in mathematics. In 1993, Andrew Wiles, a British mathematician, published a proof of FLT using the techniques of elliptic curves and modular forms.
The proof of FLT is considered one of the most important achievements in mathematics in the 20th century. It is a testament to the power of mathematics and the dedication of mathematicians to solve difficult problems.
The proof of FLT has also had a significant impact on the field of number theory. It has led to the development of new techniques and theorems, and has inspired further research in the field.
In summary, the proof of FLT is a significant achievement in mathematics that has had a profound impact on the field of number theory. It is a testament to the power of mathematics and the dedication of mathematicians
Japanese Response:
フェルマーの最終定理の証明と数論におけるその意義について説明してください。
The Fermat's Last Theorem (FLT) is a statement in number theory that states that there are no non-trivial integer solutions to the equation $a^n + b^n = c^n$ for any positive integer $n$ greater than 2.
The proof of FLT was a long-standing open problem in mathematics. In 1993, Andrew Wiles, a British mathematician, published a proof of FLT using the techniques of elliptic curves and modular forms.
The proof of FLT is considered one of the most important achievements in mathematics in the 20th century. It is a prime example of the power of abstract algebra and number theory in solving difficult problems in mathematics.
The proof of FLT also has implications for other areas of mathematics, such as algebraic geometry and number theory. For example, the proof of FLT relies on the Taniyama-Shimura-Weil conjecture, which states that every elliptic curve is a modular form. This conjecture was proven by Wiles and his collaborators, and it has since been used to prove other theorems
# Evaluations
|Tasks|Version| Filter |n-shot| Metric |Value | |Stderr|
|-----|-------|----------|-----:|-----------|-----:|---|-----:|
|gsm8k|Yaml |get-answer| 5|exact_match|0.5504|± |0.0137|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__polyglot-math-4x7b)
| Metric |Value|
|---------------------------------|----:|
|Avg. |66.84|
|AI2 Reasoning Challenge (25-Shot)|63.74|
|HellaSwag (10-Shot) |84.85|
|MMLU (5-Shot) |63.57|
|TruthfulQA (0-shot) |53.78|
|Winogrande (5-shot) |78.45|
|GSM8k (5-shot) |56.63|
|