RichardErkhov commited on
Commit
90ad915
1 Parent(s): 6551b2d

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +281 -0
README.md ADDED
@@ -0,0 +1,281 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ polyglot-math-4x7b - GGUF
11
+ - Model creator: https://huggingface.co/macadeliccc/
12
+ - Original model: https://huggingface.co/macadeliccc/polyglot-math-4x7b/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [polyglot-math-4x7b.Q2_K.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q2_K.gguf) | Q2_K | 8.24GB |
18
+ | [polyglot-math-4x7b.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.IQ3_XS.gguf) | IQ3_XS | 9.21GB |
19
+ | [polyglot-math-4x7b.IQ3_S.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.IQ3_S.gguf) | IQ3_S | 9.73GB |
20
+ | [polyglot-math-4x7b.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q3_K_S.gguf) | Q3_K_S | 9.72GB |
21
+ | [polyglot-math-4x7b.IQ3_M.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.IQ3_M.gguf) | IQ3_M | 9.92GB |
22
+ | [polyglot-math-4x7b.Q3_K.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q3_K.gguf) | Q3_K | 10.79GB |
23
+ | [polyglot-math-4x7b.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q3_K_M.gguf) | Q3_K_M | 10.79GB |
24
+ | [polyglot-math-4x7b.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q3_K_L.gguf) | Q3_K_L | 11.68GB |
25
+ | [polyglot-math-4x7b.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.IQ4_XS.gguf) | IQ4_XS | 12.15GB |
26
+ | [polyglot-math-4x7b.Q4_0.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q4_0.gguf) | Q4_0 | 12.69GB |
27
+ | [polyglot-math-4x7b.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.IQ4_NL.gguf) | IQ4_NL | 12.81GB |
28
+ | [polyglot-math-4x7b.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q4_K_S.gguf) | Q4_K_S | 12.8GB |
29
+ | [polyglot-math-4x7b.Q4_K.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q4_K.gguf) | Q4_K | 13.61GB |
30
+ | [polyglot-math-4x7b.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q4_K_M.gguf) | Q4_K_M | 13.61GB |
31
+ | [polyglot-math-4x7b.Q4_1.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q4_1.gguf) | Q4_1 | 14.09GB |
32
+ | [polyglot-math-4x7b.Q5_0.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q5_0.gguf) | Q5_0 | 15.48GB |
33
+ | [polyglot-math-4x7b.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q5_K_S.gguf) | Q5_K_S | 15.48GB |
34
+ | [polyglot-math-4x7b.Q5_K.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q5_K.gguf) | Q5_K | 15.96GB |
35
+ | [polyglot-math-4x7b.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q5_K_M.gguf) | Q5_K_M | 15.96GB |
36
+ | [polyglot-math-4x7b.Q5_1.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q5_1.gguf) | Q5_1 | 16.88GB |
37
+ | [polyglot-math-4x7b.Q6_K.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q6_K.gguf) | Q6_K | 18.46GB |
38
+ | [polyglot-math-4x7b.Q8_0.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_polyglot-math-4x7b-gguf/blob/main/polyglot-math-4x7b.Q8_0.gguf) | Q8_0 | 23.9GB |
39
+
40
+
41
+
42
+
43
+ Original model description:
44
+ ---
45
+ language:
46
+ - en
47
+ - zh
48
+ - ja
49
+ license: apache-2.0
50
+ model-index:
51
+ - name: polyglot-math-4x7b
52
+ results:
53
+ - task:
54
+ type: text-generation
55
+ name: Text Generation
56
+ dataset:
57
+ name: AI2 Reasoning Challenge (25-Shot)
58
+ type: ai2_arc
59
+ config: ARC-Challenge
60
+ split: test
61
+ args:
62
+ num_few_shot: 25
63
+ metrics:
64
+ - type: acc_norm
65
+ value: 63.74
66
+ name: normalized accuracy
67
+ source:
68
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/polyglot-math-4x7b
69
+ name: Open LLM Leaderboard
70
+ - task:
71
+ type: text-generation
72
+ name: Text Generation
73
+ dataset:
74
+ name: HellaSwag (10-Shot)
75
+ type: hellaswag
76
+ split: validation
77
+ args:
78
+ num_few_shot: 10
79
+ metrics:
80
+ - type: acc_norm
81
+ value: 84.85
82
+ name: normalized accuracy
83
+ source:
84
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/polyglot-math-4x7b
85
+ name: Open LLM Leaderboard
86
+ - task:
87
+ type: text-generation
88
+ name: Text Generation
89
+ dataset:
90
+ name: MMLU (5-Shot)
91
+ type: cais/mmlu
92
+ config: all
93
+ split: test
94
+ args:
95
+ num_few_shot: 5
96
+ metrics:
97
+ - type: acc
98
+ value: 63.57
99
+ name: accuracy
100
+ source:
101
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/polyglot-math-4x7b
102
+ name: Open LLM Leaderboard
103
+ - task:
104
+ type: text-generation
105
+ name: Text Generation
106
+ dataset:
107
+ name: TruthfulQA (0-shot)
108
+ type: truthful_qa
109
+ config: multiple_choice
110
+ split: validation
111
+ args:
112
+ num_few_shot: 0
113
+ metrics:
114
+ - type: mc2
115
+ value: 53.78
116
+ source:
117
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/polyglot-math-4x7b
118
+ name: Open LLM Leaderboard
119
+ - task:
120
+ type: text-generation
121
+ name: Text Generation
122
+ dataset:
123
+ name: Winogrande (5-shot)
124
+ type: winogrande
125
+ config: winogrande_xl
126
+ split: validation
127
+ args:
128
+ num_few_shot: 5
129
+ metrics:
130
+ - type: acc
131
+ value: 78.45
132
+ name: accuracy
133
+ source:
134
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/polyglot-math-4x7b
135
+ name: Open LLM Leaderboard
136
+ - task:
137
+ type: text-generation
138
+ name: Text Generation
139
+ dataset:
140
+ name: GSM8k (5-shot)
141
+ type: gsm8k
142
+ config: main
143
+ split: test
144
+ args:
145
+ num_few_shot: 5
146
+ metrics:
147
+ - type: acc
148
+ value: 56.63
149
+ name: accuracy
150
+ source:
151
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/polyglot-math-4x7b
152
+ name: Open LLM Leaderboard
153
+ ---
154
+ # Polyglot-math-4x7b-24b
155
+
156
+ ![polyglot](polyglot-math.png)
157
+
158
+ Polyglot-4x7b is a Mixture of Experts approach to a multilingual model.
159
+
160
+ The model is a merge of models that are capable of Chinese and Japanese output.
161
+
162
+ + meta-math/MetaMath-Mistral-7B
163
+ + oshizo/japanese-e5-mistral-7b_slerp
164
+ + cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
165
+ + s3nh/Mistral-7B-Evol-Instruct-Chinese
166
+
167
+ I fit the gsm8k evaluation for this model on 20GB of VRAM.
168
+
169
+ # Code Example
170
+
171
+ Inference [Colab](https://colab.research.google.com/drive/1tYSb63IKZDsiQ5BIJU8Oc92phxugAmB3?usp=sharing)
172
+
173
+ ```python
174
+ from transformers import AutoModelForCausalLM, AutoTokenizer
175
+
176
+ def generate_response(prompt):
177
+ """
178
+ Generate a response from the model based on the input prompt.
179
+
180
+ Args:
181
+ prompt (str): Prompt for the model.
182
+
183
+ Returns:
184
+ str: The generated response from the model.
185
+ """
186
+ # Tokenize the input prompt
187
+ inputs = tokenizer(prompt, return_tensors="pt")
188
+
189
+ # Generate output tokens
190
+ outputs = model.generate(**inputs, max_new_tokens=256, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)
191
+
192
+ # Decode the generated tokens to a string
193
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
194
+
195
+ return response
196
+
197
+ # Load the model and tokenizer
198
+ model_id = "macadeliccc/polyglot-math-4x7b"
199
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
200
+ model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)
201
+
202
+ # Math prompts in different languages
203
+ english_math_prompt = "Explain the proof of Fermat's Last Theorem and its implications in number theory."
204
+ chinese_math_prompt = "解释费马大定理的证明及其在数论中的意义。"
205
+ japanese_math_prompt = "フェルマーの最終定理の証明と数論におけるその意義について説明してください。"
206
+
207
+ # Generate and print responses for each math prompt
208
+ print("English Math Response:")
209
+ print(generate_response(english_math_prompt), "\n")
210
+
211
+ print("Chinese Math Response:")
212
+ print(generate_response(chinese_math_prompt), "\n")
213
+
214
+ print("Japanese Math Response:")
215
+ print(generate_response(japanese_math_prompt), "\n")
216
+
217
+ ```
218
+
219
+ ## Example Output
220
+
221
+ **The math model was trained in english so it defaults to english, but it still understands the question and can translate the answer.
222
+ English:
223
+
224
+ Explain the proof of Fermat's Last Theorem and its implications in number theory.
225
+
226
+ Fermat's Last Theorem (FLT) states that there are no non-trivial integer solutions to the equation $x^n + y^n = z^n$ for any integer $n \geq 3$. The proof of FLT was a long-standing problem in number theory, and it was finally proven in 1995 by Andrew Wiles.
227
+
228
+ The proof of FLT is quite complex and involves many different techniques and ideas from number theory, algebra, and analysis. The main idea behind the proof is to use elliptic curves and modular forms to construct a system of equations that can be used to show that there are no non-trivial integer solutions to the equation $x^n + y^n = z^n$ for any integer $n \geq 3$.
229
+
230
+ The implications of FLT in number theory are far-reaching. The proof of FLT relies on many different techniques and ideas from number theory, and it has led to the development of new techniques and ideas in the field.
231
+ This is a simple implementation of the quicksort algorithm in python. The function `quicksort` takes an array as input and returns a sorted array. The algorithm works by selecting a pivot element from the array and partitioning the other elements into two sub-arrays, according to whether they are less than or greater than the pivot. The process is then repeated recursively on the sub-arrays until the entire array is sorted.
232
+
233
+ Chinese Response:
234
+
235
+ 解释费马大定理的证明及其在数论中的意义。
236
+
237
+ Fermat's Last Theorem (FLT) is a statement in number theory that states that there are no non-trivial integer solutions to the equation $x^n + y^n = z^n$ for any integer $n \geq 3$.
238
+
239
+ The proof of FLT was a long-standing open problem in mathematics. In 1993, Andrew Wiles, a British mathematician, published a proof of FLT using the techniques of elliptic curves and modular forms.
240
+
241
+ The proof of FLT is considered one of the most important achievements in mathematics in the 20th century. It is a testament to the power of mathematics and the dedication of mathematicians to solve difficult problems.
242
+
243
+ The proof of FLT has also had a significant impact on the field of number theory. It has led to the development of new techniques and theorems, and has inspired further research in the field.
244
+
245
+ In summary, the proof of FLT is a significant achievement in mathematics that has had a profound impact on the field of number theory. It is a testament to the power of mathematics and the dedication of mathematicians
246
+
247
+ Japanese Response:
248
+
249
+ フェルマーの最終定理の証明と数論におけるその意義について説明してください。
250
+
251
+ The Fermat's Last Theorem (FLT) is a statement in number theory that states that there are no non-trivial integer solutions to the equation $a^n + b^n = c^n$ for any positive integer $n$ greater than 2.
252
+
253
+ The proof of FLT was a long-standing open problem in mathematics. In 1993, Andrew Wiles, a British mathematician, published a proof of FLT using the techniques of elliptic curves and modular forms.
254
+
255
+ The proof of FLT is considered one of the most important achievements in mathematics in the 20th century. It is a prime example of the power of abstract algebra and number theory in solving difficult problems in mathematics.
256
+
257
+ The proof of FLT also has implications for other areas of mathematics, such as algebraic geometry and number theory. For example, the proof of FLT relies on the Taniyama-Shimura-Weil conjecture, which states that every elliptic curve is a modular form. This conjecture was proven by Wiles and his collaborators, and it has since been used to prove other theorems
258
+
259
+
260
+
261
+ # Evaluations
262
+
263
+ |Tasks|Version| Filter |n-shot| Metric |Value | |Stderr|
264
+ |-----|-------|----------|-----:|-----------|-----:|---|-----:|
265
+ |gsm8k|Yaml |get-answer| 5|exact_match|0.5504|± |0.0137|
266
+
267
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
268
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__polyglot-math-4x7b)
269
+
270
+ | Metric |Value|
271
+ |---------------------------------|----:|
272
+ |Avg. |66.84|
273
+ |AI2 Reasoning Challenge (25-Shot)|63.74|
274
+ |HellaSwag (10-Shot) |84.85|
275
+ |MMLU (5-Shot) |63.57|
276
+ |TruthfulQA (0-shot) |53.78|
277
+ |Winogrande (5-shot) |78.45|
278
+ |GSM8k (5-shot) |56.63|
279
+
280
+
281
+