Quantization made by Richard Erkhov.
InstructLM-1.3B - GGUF
- Model creator: https://huggingface.co/instruction-pretrain/
- Original model: https://huggingface.co/instruction-pretrain/InstructLM-1.3B/
Name | Quant method | Size |
---|---|---|
InstructLM-1.3B.Q2_K.gguf | Q2_K | 0.49GB |
InstructLM-1.3B.IQ3_XS.gguf | IQ3_XS | 0.54GB |
InstructLM-1.3B.IQ3_S.gguf | IQ3_S | 0.57GB |
InstructLM-1.3B.Q3_K_S.gguf | Q3_K_S | 0.56GB |
InstructLM-1.3B.IQ3_M.gguf | IQ3_M | 0.58GB |
InstructLM-1.3B.Q3_K.gguf | Q3_K | 0.62GB |
InstructLM-1.3B.Q3_K_M.gguf | Q3_K_M | 0.62GB |
InstructLM-1.3B.Q3_K_L.gguf | Q3_K_L | 0.67GB |
InstructLM-1.3B.IQ4_XS.gguf | IQ4_XS | 0.69GB |
InstructLM-1.3B.Q4_0.gguf | Q4_0 | 0.72GB |
InstructLM-1.3B.IQ4_NL.gguf | IQ4_NL | 0.73GB |
InstructLM-1.3B.Q4_K_S.gguf | Q4_K_S | 0.73GB |
InstructLM-1.3B.Q4_K.gguf | Q4_K | 0.77GB |
InstructLM-1.3B.Q4_K_M.gguf | Q4_K_M | 0.77GB |
InstructLM-1.3B.Q4_1.gguf | Q4_1 | 0.8GB |
InstructLM-1.3B.Q5_0.gguf | Q5_0 | 0.87GB |
InstructLM-1.3B.Q5_K_S.gguf | Q5_K_S | 0.87GB |
InstructLM-1.3B.Q5_K.gguf | Q5_K | 0.89GB |
InstructLM-1.3B.Q5_K_M.gguf | Q5_K_M | 0.89GB |
InstructLM-1.3B.Q5_1.gguf | Q5_1 | 0.95GB |
InstructLM-1.3B.Q6_K.gguf | Q6_K | 1.03GB |
InstructLM-1.3B.Q8_0.gguf | Q8_0 | 1.33GB |
Original model description:
license: apache-2.0 datasets: - tiiuae/falcon-refinedweb - instruction-pretrain/ft-instruction-synthesizer-collection language: - en
Instruction Pre-Training: Language Models are Supervised Multitask Learners
This repo contains the general models pre-trained from scratch in our paper Instruction Pre-Training: Language Models are Supervised Multitask Learners.
We explore supervised multitask pre-training by proposing Instruction Pre-Training, a framework that scalably augments massive raw corpora with instruction-response pairs to pre-train language models. The instruction-response pairs are generated by an efficient instruction synthesizer built on open-source models. In our experiments, we synthesize 200M instruction-response pairs covering 40+ task categories to verify the effectiveness of Instruction Pre-Training. Instruction Pre-Training* outperforms Vanilla Pre-training in both general pre-training from scratch and domain-adaptive continual pre-training. In pre-training from scratch, Instruction Pre-Training not only improves pre-trained base models but also benefits more from further instruction tuning. In continual pre-training, Instruction Pre-Training enables Llama3-8B to be comparable to or even outperform Llama3-70B.
Resources
๐ค We share our data and models with example usages, feel free to open any issues or discussions! ๐ค
- Context-Based Instruction Synthesizer: instruction-synthesizer
- Fine-Tuning Data for the Synthesizer: ft-instruction-synthesizer-collection
- General Models Pre-Trained from Scratch:
- Domain-Specific Models Pre-Trained from Llama3-8B:
- General Instruction-Augmented Corpora: general-instruction-augmented-corpora
- Domain-Specific Instruction-Augmented Corpora (no finance data to avoid ethical issues): medicine-instruction-augmented-corpora
General Pre-Training From Scratch
We augment the RefinedWeb corproa with instruction-response pairs generated by our context-based instruction synthesizer to pre-train general langauge models from scratch.
To evaluate our general base model using the lm-evaluation-harness framework
- Setup dependencies:
git clone https://github.com/EleutherAI/lm-evaluation-harness
cd lm-evaluation-harness
pip install -e .
- Evalaute:
MODEL=instruction-pretrain/InstructLM-1.3B
add_bos_token=True # this flag is needed because lm-eval-harness set add_bos_token to False by default, but ours require add_bos_token to be True
accelerate launch -m lm_eval --model hf \
--model_args pretrained=${MODEL},add_bos_token=${add_bos_token},dtype=float16 \
--gen_kwargs do_sample=False \
--tasks piqa,hellaswag,winogrande \
--batch_size auto \
--num_fewshot 0
accelerate launch -m lm_eval --model hf \
--model_args pretrained=${MODEL},add_bos_token=${add_bos_token},dtype=float16 \
--gen_kwargs do_sample=False \
--tasks social_iqa,ai2_arc,openbookqa,boolq,mmlu \
--batch_size auto \
--num_fewshot 5
Citation
If you find our work helpful, please cite us:
Instruction Pre-Training
@article{cheng2024instruction,
title={Instruction Pre-Training: Language Models are Supervised Multitask Learners},
author={Cheng, Daixuan and Gu, Yuxian and Huang, Shaohan and Bi, Junyu and Huang, Minlie and Wei, Furu},
journal={arXiv preprint arXiv:2406.14491},
year={2024}
}
@inproceedings{
cheng2024adapting,
title={Adapting Large Language Models via Reading Comprehension},
author={Daixuan Cheng and Shaohan Huang and Furu Wei},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=y886UXPEZ0}
}
- Downloads last month
- 261