RichardErkhov commited on
Commit
6602073
1 Parent(s): c3396d8

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +163 -0
README.md ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ TowerInstruct-7B-v0.2 - bnb 4bits
11
+ - Model creator: https://huggingface.co/Unbabel/
12
+ - Original model: https://huggingface.co/Unbabel/TowerInstruct-7B-v0.2/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ language:
20
+ - en
21
+ - de
22
+ - fr
23
+ - zh
24
+ - pt
25
+ - nl
26
+ - ru
27
+ - ko
28
+ - it
29
+ - es
30
+ license: cc-by-nc-4.0
31
+ metrics:
32
+ - comet
33
+ pipeline_tag: translation
34
+ ---
35
+ # Model Card for TowerInstruct-7B-v0.2
36
+
37
+ ## Model Details
38
+
39
+ ### Model Description
40
+
41
+ TowerInstruct-7B is a language model that results from fine-tuning TowerBase on the TowerBlocks supervised fine-tuning dataset. TowerInstruct-7B-v0.2 is the first model in the series.
42
+ The model is trained to handle several translation-related tasks, such as general machine translation (e.g., sentence- and paragraph/document-level translation, terminology-aware translation, context-aware translation), automatic post edition, named-entity recognition, gramatical error correction, and paraphrase generation.
43
+ We will release more details in the upcoming technical report. For now, you can check results obtained with the model [here](https://unbabel.com/announcing-tower-an-open-multilingual-llm-for-translation-related-tasks/).
44
+
45
+ - **Developed by:** Unbabel, Instituto Superior Técnico, CentraleSupélec University of Paris-Saclay
46
+ - **Model type:** A 7B parameter model fine-tuned on a mix of publicly available, synthetic datasets on translation-related tasks, as well as conversational datasets and code instructions.
47
+ - **Language(s) (NLP):** English, Portuguese, Spanish, French, German, Dutch, Italian, Korean, Chinese, Russian
48
+ - **License:** CC-BY-NC-4.0, Llama 2 is licensed under the [LLAMA 2 Community License](https://ai.meta.com/llama/license/), Copyright © Meta Platforms, Inc. All Rights Reserved.
49
+ - **Finetuned from model:** [TowerBase](https://huggingface.co/Unbabel/TowerBase-7B-v0.1)
50
+
51
+ **Update**: TowerInstruct-7B-v0.2 has more reliable document-level translation capabilities in comparison with TowerInstruct-7B-v0.1. The new version of TowerBlocks used to train v0.2 is also available in the Tower collection.
52
+
53
+
54
+
55
+ ## Intended uses & limitations
56
+
57
+ The model was initially fine-tuned on a filtered and preprocessed supervised fine-tuning dataset ([TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.1)), which contains a diverse range of data sources:
58
+ - Translation (sentence and paragraph-level)
59
+ - Automatic Post Edition
60
+ - Machine Translation Evaluation
61
+ - Context-aware Translation
62
+ - Terminology-aware Translation
63
+ - Multi-reference Translation
64
+ - Named-entity Recognition
65
+ - Paraphrase Generation
66
+ - Synthetic Chat data
67
+ - Code instructions
68
+
69
+ You can find the dataset and all data sources of [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.1) here.
70
+
71
+ Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:
72
+
73
+ ```python
74
+ # Install transformers from source - only needed for versions <= v4.34
75
+ # pip install git+https://github.com/huggingface/transformers.git
76
+ # pip install accelerate
77
+
78
+ import torch
79
+ from transformers import pipeline
80
+
81
+ pipe = pipeline("text-generation", model="Unbabel/TowerInstruct-v0.2", torch_dtype=torch.bfloat16, device_map="auto")
82
+ # We use the tokenizer’s chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
83
+ messages = [
84
+ {"role": "user", "content": "Translate the following text from Portuguese into English.\nPortuguese: Um grupo de investigadores lançou um novo modelo para tarefas relacionadas com tradução.\nEnglish:"},
85
+ ]
86
+ prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
87
+ outputs = pipe(prompt, max_new_tokens=256, do_sample=False)
88
+ print(outputs[0]["generated_text"])
89
+ # <|im_start|>user
90
+ # Translate the following text from Portuguese into English.
91
+ # Portuguese: Um grupo de investigadores lançou um novo modelo para tarefas relacionadas com tradução.
92
+ # English:<|im_end|>
93
+ # <|im_start|>assistant
94
+ # A group of researchers has launched a new model for translation-related tasks.
95
+ ```
96
+
97
+ ### Out-of-Scope Use
98
+
99
+ The model is not guaranteed to perform for languages other than the 10 languages it supports. Even though we trained the model on conversational data and code instructions, it is not intended to be used as a conversational chatbot or code assistant.
100
+ We are currently working on improving quality and consistency on document-level translation. This model should is not intended to be use as a document-level translator.
101
+
102
+ ## Bias, Risks, and Limitations
103
+
104
+ TowerInstruct-v0.2 has not been aligned to human preferences, so the model may generate problematic outputs (e.g., hallucinations, harmful content, or false statements).
105
+
106
+ ## Prompt Format
107
+
108
+ TowerInstruct-v0.2 was trained using the ChatML prompt templates without any system prompts. An example follows below:
109
+ ```
110
+ <|im_start|>user
111
+ {USER PROMPT}<|im_end|>
112
+ <|im_start|>assistant
113
+ {MODEL RESPONSE}<|im_end|>
114
+ <|im_start|>user
115
+ [...]
116
+ ```
117
+
118
+ ### Supervised tasks
119
+
120
+ The prompts for all supervised tasks can be found in [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.1). We have used multiple prompt templates for each task. While different prompts may offer different outputs, the difference in downstream performance should be very minimal.
121
+
122
+ ## Training Details
123
+
124
+ ### Training Data
125
+
126
+ Link to [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.1).
127
+
128
+ #### Training Hyperparameters
129
+
130
+ The following hyperparameters were used during training:
131
+
132
+ - total_train_batch_size: 256
133
+
134
+ - learning_rate: 7e-06
135
+
136
+ - lr_scheduler_type: cosine
137
+
138
+ - lr_scheduler_warmup_steps: 500
139
+
140
+ - weight_decay: 0.01
141
+
142
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
143
+
144
+ - num_epochs: 4
145
+
146
+ - max_seq_length: 2048
147
+
148
+ ## Citation
149
+
150
+ ```bibtex
151
+ @misc{tower_llm_2024,
152
+ title={Tower: An Open Multilingual Large Language Model for Translation-Related Tasks},
153
+ author={Duarte M. Alves and José Pombal and Nuno M. Guerreiro and Pedro H. Martins and João Alves and Amin Farajian and Ben Peters and Ricardo Rei and Patrick Fernandes and Sweta Agrawal and Pierre Colombo and José G. C. de Souza and André F. T. Martins},
154
+ year={2024},
155
+ eprint={2402.17733},
156
+ archivePrefix={arXiv},
157
+ primaryClass={cs.CL}
158
+ }
159
+ ```
160
+
161
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
162
+
163
+