RichardErkhov commited on
Commit
b78b923
1 Parent(s): a6b7844

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +499 -0
README.md ADDED
@@ -0,0 +1,499 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ MistralLite-11B - bnb 4bits
11
+ - Model creator: https://huggingface.co/NurtureAI/
12
+ - Original model: https://huggingface.co/NurtureAI/MistralLite-11B/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ license: apache-2.0
20
+ inference: false
21
+ model-index:
22
+ - name: MistralLite-11B
23
+ results:
24
+ - task:
25
+ type: text-generation
26
+ name: Text Generation
27
+ dataset:
28
+ name: AI2 Reasoning Challenge (25-Shot)
29
+ type: ai2_arc
30
+ config: ARC-Challenge
31
+ split: test
32
+ args:
33
+ num_few_shot: 25
34
+ metrics:
35
+ - type: acc_norm
36
+ value: 57.68
37
+ name: normalized accuracy
38
+ source:
39
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=NurtureAI/MistralLite-11B
40
+ name: Open LLM Leaderboard
41
+ - task:
42
+ type: text-generation
43
+ name: Text Generation
44
+ dataset:
45
+ name: HellaSwag (10-Shot)
46
+ type: hellaswag
47
+ split: validation
48
+ args:
49
+ num_few_shot: 10
50
+ metrics:
51
+ - type: acc_norm
52
+ value: 79.54
53
+ name: normalized accuracy
54
+ source:
55
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=NurtureAI/MistralLite-11B
56
+ name: Open LLM Leaderboard
57
+ - task:
58
+ type: text-generation
59
+ name: Text Generation
60
+ dataset:
61
+ name: MMLU (5-Shot)
62
+ type: cais/mmlu
63
+ config: all
64
+ split: test
65
+ args:
66
+ num_few_shot: 5
67
+ metrics:
68
+ - type: acc
69
+ value: 50.09
70
+ name: accuracy
71
+ source:
72
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=NurtureAI/MistralLite-11B
73
+ name: Open LLM Leaderboard
74
+ - task:
75
+ type: text-generation
76
+ name: Text Generation
77
+ dataset:
78
+ name: TruthfulQA (0-shot)
79
+ type: truthful_qa
80
+ config: multiple_choice
81
+ split: validation
82
+ args:
83
+ num_few_shot: 0
84
+ metrics:
85
+ - type: mc2
86
+ value: 38.27
87
+ source:
88
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=NurtureAI/MistralLite-11B
89
+ name: Open LLM Leaderboard
90
+ - task:
91
+ type: text-generation
92
+ name: Text Generation
93
+ dataset:
94
+ name: Winogrande (5-shot)
95
+ type: winogrande
96
+ config: winogrande_xl
97
+ split: validation
98
+ args:
99
+ num_few_shot: 5
100
+ metrics:
101
+ - type: acc
102
+ value: 76.64
103
+ name: accuracy
104
+ source:
105
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=NurtureAI/MistralLite-11B
106
+ name: Open LLM Leaderboard
107
+ - task:
108
+ type: text-generation
109
+ name: Text Generation
110
+ dataset:
111
+ name: GSM8k (5-shot)
112
+ type: gsm8k
113
+ config: main
114
+ split: test
115
+ args:
116
+ num_few_shot: 5
117
+ metrics:
118
+ - type: acc
119
+ value: 0.38
120
+ name: accuracy
121
+ source:
122
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=NurtureAI/MistralLite-11B
123
+ name: Open LLM Leaderboard
124
+ ---
125
+
126
+ # MistralLite 11B Model
127
+
128
+ # Original Model Card
129
+
130
+ MistralLite is a fine-tuned [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) language model, with enhanced capabilities of processing long context (up to 32K tokens). By utilizing an adapted Rotary Embedding and sliding window during fine-tuning, MistralLite is able to **perform significantly better on several long context retrieve and answering tasks**, while keeping the simple model structure of the original model. MistralLite is useful for applications such as long context line and topic retrieval, summarization, question-answering, and etc. MistralLite can be deployed on a single AWS `g5.2x` instance with Sagemaker [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) endpoint, making it suitable for applications that require high performance in resource-constrained environments. You can also serve the MistralLite model directly using TGI docker containers. Also, MistralLite supports other ways of serving like [vLLM](https://github.com/vllm-project/vllm), and you can use MistralLite in Python by using the [HuggingFace transformers](https://huggingface.co/docs/transformers/index) and [FlashAttention-2](https://github.com/Dao-AILab/flash-attention) library.
131
+
132
+ MistralLite is similar to [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1), and their similarities and differences are summarized below:
133
+ |Model|Fine-tuned on long contexts| Max context length| RotaryEmbedding adaptation| Sliding Window Size|
134
+ |----------|-------------:|------------:|-----------:|-----------:|
135
+ | Mistral-7B-Instruct-v0.1 | up to 8K tokens | 32K | rope_theta = 10000 | 4096 |
136
+ | MistralLite | up to 16K tokens | 32K | **rope_theta = 1000000** | **16384** |
137
+
138
+ **Important - Use the prompt template below for MistralLite:**
139
+
140
+ ```<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>```
141
+
142
+ ## Motivation of Developing MistralLite
143
+
144
+ Since the release of [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1), the model became increasingly popular because its strong performance
145
+ on a wide range of benchmarks. But most of the benchmarks are evaluated on `short context`, and not much has been investigated on its performance on long context tasks.
146
+ Then We evaluated `Mistral-7B-Instruct-v0.1` against benchmarks that are specifically designed to assess the capabilities of LLMs in handling longer context.
147
+ Although the performance of the models on long context was fairly competitive on long context less than 4096 tokens,
148
+ there were some limitations on its performance on longer context. Motivated by improving its performance on longer context, we finetuned the Mistral 7B model, and produced `Mistrallite`. The model managed to `significantly boost the performance of long context handling` over Mistral-7B-Instruct-v0.1. The detailed `long context evalutaion results` are as below:
149
+
150
+ 1. [Topic Retrieval](https://lmsys.org/blog/2023-06-29-longchat/)
151
+ |Model Name|Input length| Input length | Input length| Input length| Input length|
152
+ |----------|-------------:|-------------:|------------:|-----------:|-----------:|
153
+ | | 2851| 5568 |8313 | 11044 | 13780
154
+ | Mistral-7B-Instruct-v0.1 | 100% | 50% | 2% | 0% | 0% |
155
+ | MistralLite | **100%** | **100%** | **100%** | **100%** | **98%** |
156
+
157
+ 2. [Line Retrieval](https://lmsys.org/blog/2023-06-29-longchat/#longeval-results)
158
+
159
+ |Model Name|Input length| Input length | Input length| Input length| Input length|Input length|
160
+ |----------|-------------:|-------------:|------------:|-----------:|-----------:|-----------:|
161
+ | | 3818| 5661 |7505 | 9354 | 11188 | 12657
162
+ | Mistral-7B-Instruct-v0.1 | **98%** | 62% | 42% | 42% | 32% | 30% |
163
+ | MistralLite | **98%** | **92%** | **88%** | **76%** | **70%** | **60%** |
164
+
165
+ 3. [Pass key Retrieval](https://github.com/epfml/landmark-attention/blob/main/llama/run_test.py#L101)
166
+
167
+ |Model Name|Input length| Input length | Input length| Input length|
168
+ |----------|-------------:|-------------:|------------:|-----------:|
169
+ | | 3264| 5396 |8329 | 10197 |
170
+ | Mistral-7B-Instruct-v0.1 | **100%** | 50% | 20% | 30% |
171
+ | MistralLite | **100%** | **100%** | **100%** | **100%** |
172
+
173
+ 4. [Question Answering with Long Input Texts](https://nyu-mll.github.io/quality/)
174
+ |Model Name| Test set Accuracy | Hard subset Accuracy|
175
+ |----------|-------------:|-------------:|
176
+ | Mistral-7B-Instruct-v0.1 | 44.3% | 39.7% |
177
+ | MistralLite | **64.4%** | **56.2%** |
178
+
179
+ ### Example test on long context of 13400 tokens
180
+ - Context is from [Amazon Aurora FAQs](https://aws.amazon.com/rds/aurora/faqs/)
181
+ - Question: *please tell me how does pgvector help with Generative AI and give me some examples.*
182
+ - Answer from MistralLite:
183
+ ```code
184
+ pgvector is an open-source extension for PostgreSQL supported by Amazon Aurora PostgreSQL-Compatible Edition.
185
+
186
+ You can use pgvector to store, search, index, and query billions of embeddings that are generated from machine learning (ML) and artificial intelligence (AI) models in your database, such as those from Amazon Bedrock (limited preview) or Amazon SageMaker. A vector embedding is a numerical representation that represents the semantic meaning of content such as text, images, and video.
187
+
188
+ With pgvector, you can query embeddings in your Aurora PostgreSQL database to perform efficient semantic similarity searches of these data types, represented as vectors, combined with other tabular data in Aurora. This enables the use of generative AI and other AI/ML systems for new types of applications such as personalized recommendations based on similar text descriptions or images, candidate match based on interview notes, customer service next best action recommendations based on successful transcripts or chat session dialogs, and more.
189
+ ```
190
+
191
+ ## Model Details
192
+
193
+ - **Developed by:** [AWS Contributors](https://github.com/orgs/aws-samples/teams/aws-prototype-ml-apac)
194
+ - **Model type:** [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
195
+ - **Language:** English
196
+ - **Finetuned from weights:** [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
197
+ - **Finetuned on data:**
198
+ - [SLidingEncoder and Decoder (SLED)](https://huggingface.co/datasets/tau/sled)
199
+ - [(Long) Natural Questions (NQ)](https://huggingface.co/datasets/togethercomputer/Long-Data-Collections#multi-passage-qa-from-natural-questions)
200
+ - [OpenAssistant Conversations Dataset (OASST1)](https://huggingface.co/datasets/OpenAssistant/oasst1)
201
+ - **Supported Serving Framework:**
202
+ - [Text-Generation-Inference 1.1.0](https://github.com/huggingface/text-generation-inference/tree/v1.1.0)
203
+ - [vLLM](https://github.com/vllm-project/vllm)
204
+ - [HuggingFace transformers](https://huggingface.co/docs/transformers/index)
205
+ - [HuggingFace Text Generation Inference (TGI) container on SageMaker](https://github.com/awslabs/llm-hosting-container)
206
+ - **Model License:** Apache 2.0
207
+ - **Contact:** [GitHub issues](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/issues)
208
+ - **Inference Code** [Github Repo](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/)
209
+
210
+ ## MistralLite LM-Eval Results
211
+
212
+ ### Methodology
213
+
214
+ - Please see https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
215
+ - revision=4ececff
216
+ - Note: we used --model hf-causal-experimental instead of --model hf-causal
217
+
218
+ ### Results
219
+
220
+ |Average|hellaswag| arc_challenge|truthful_qa (mc2)| MMLU (acc)|
221
+ |----------|-------------:|------------:|-----------:|-----------:|
222
+ | 0.57221 | 0.81617 | 0.58874 | 0.38275 | 0.5012 |
223
+
224
+ ## How to Use MistralLite from Python Code (HuggingFace transformers) ##
225
+
226
+ **Important** - For an end-to-end example Jupyter notebook, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/huggingface-transformers/example_usage.ipynb).
227
+
228
+ ### Install the necessary packages
229
+
230
+ Requires: [transformers](https://pypi.org/project/transformers/) 4.34.0 or later, [flash-attn](https://pypi.org/project/flash-attn/) 2.3.1.post1 or later,
231
+ and [accelerate](https://pypi.org/project/accelerate/) 0.23.0 or later.
232
+
233
+ ```shell
234
+ pip install transformers==4.34.0
235
+ pip install flash-attn==2.3.1.post1 --no-build-isolation
236
+ pip install accelerate==0.23.0
237
+ ```
238
+ ### You can then try the following example code
239
+
240
+ ```python
241
+ from transformers import AutoModelForCausalLM, AutoTokenizer
242
+ import transformers
243
+ import torch
244
+
245
+ model_id = "amazon/MistralLite"
246
+
247
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
248
+ model = AutoModelForCausalLM.from_pretrained(model_id,
249
+ torch_dtype=torch.bfloat16,
250
+ use_flash_attention_2=True,
251
+ device_map="auto",)
252
+ pipeline = transformers.pipeline(
253
+ "text-generation",
254
+ model=model,
255
+ tokenizer=tokenizer,
256
+ )
257
+ prompt = "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>"
258
+
259
+ sequences = pipeline(
260
+ prompt,
261
+ max_new_tokens=400,
262
+ do_sample=False,
263
+ return_full_text=False,
264
+ num_return_sequences=1,
265
+ eos_token_id=tokenizer.eos_token_id,
266
+ )
267
+ for seq in sequences:
268
+ print(f"{seq['generated_text']}")
269
+ ```
270
+ **Important** - Use the prompt template below for MistralLite:
271
+ ```
272
+ <|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>
273
+ ```
274
+
275
+ ## How to Serve MistralLite on TGI ##
276
+ **Important:**
277
+ - For an end-to-end example Jupyter notebook using the native TGI container, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/tgi/example_usage.ipynb).
278
+ - If the **input context length is greater than 12K tokens**, it is recommended using a custom TGI container, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/tgi-custom/example_usage.ipynb).
279
+
280
+ ### Start TGI server ###
281
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
282
+
283
+ Example Docker parameters:
284
+
285
+ ```shell
286
+ docker run -d --gpus all --shm-size 1g -p 443:80 -v $(pwd)/models:/data ghcr.io/huggingface/text-generation-inference:1.1.0 \
287
+ --model-id amazon/MistralLite \
288
+ --max-input-length 16000 \
289
+ --max-total-tokens 16384 \
290
+ --max-batch-prefill-tokens 16384 \
291
+ --trust-remote-code
292
+ ```
293
+
294
+ ### Perform Inference ###
295
+ Example Python code for inference with TGI (requires `text_generation` 0.6.1 or later):
296
+
297
+ ```shell
298
+ pip install text_generation==0.6.1
299
+ ```
300
+
301
+ ```python
302
+ from text_generation import Client
303
+
304
+ SERVER_PORT = 443
305
+ SERVER_HOST = "localhost"
306
+ SERVER_URL = f"{SERVER_HOST}:{SERVER_PORT}"
307
+ tgi_client = Client(f"http://{SERVER_URL}", timeout=60)
308
+
309
+ def invoke_tgi(prompt,
310
+ random_seed=1,
311
+ max_new_tokens=400,
312
+ print_stream=True,
313
+ assist_role=True):
314
+ if (assist_role):
315
+ prompt = f"<|prompter|>{prompt}</s><|assistant|>"
316
+ output = ""
317
+ for response in tgi_client.generate_stream(
318
+ prompt,
319
+ do_sample=False,
320
+ max_new_tokens=max_new_tokens,
321
+ return_full_text=False,
322
+ #temperature=None,
323
+ #truncate=None,
324
+ #seed=random_seed,
325
+ #typical_p=0.2,
326
+ ):
327
+ if hasattr(response, "token"):
328
+ if not response.token.special:
329
+ snippet = response.token.text
330
+ output += snippet
331
+ if (print_stream):
332
+ print(snippet, end='', flush=True)
333
+ return output
334
+
335
+ prompt = "What are the main challenges to support a long context for LLM?"
336
+ result = invoke_tgi(prompt)
337
+ ```
338
+
339
+ **Important** - When using MistralLite for inference for the first time, it may require a brief 'warm-up' period that can take 10s of seconds. However, subsequent inferences should be faster and return results in a more timely manner. This warm-up period is normal and should not affect the overall performance of the system once the initialisation period has been completed.
340
+
341
+
342
+ ## How to Deploy MistralLite on Amazon SageMaker ##
343
+ **Important:**
344
+ - For an end-to-end example Jupyter notebook using the SageMaker built-in container, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/sagemaker-tgi/example_usage.ipynb).
345
+ - If the **input context length is greater than 12K tokens**, it is recommended using a custom docker container, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/sagemaker-tgi-custom/example_usage.ipynb).
346
+
347
+ ### Install the necessary packages
348
+
349
+ Requires: [sagemaker](https://pypi.org/project/sagemaker/) 2.192.1 or later.
350
+
351
+ ```shell
352
+ pip install sagemaker==2.192.1
353
+ ```
354
+
355
+ ### Deploy the Model as A SageMaker Endpoint ###
356
+ To deploy MistralLite on a SageMaker endpoint, please follow the example code as below.
357
+ ```python
358
+ import sagemaker
359
+ from sagemaker.huggingface import HuggingFaceModel, get_huggingface_llm_image_uri
360
+ import time
361
+
362
+ sagemaker_session = sagemaker.Session()
363
+ region = sagemaker_session.boto_region_name
364
+ role = sagemaker.get_execution_role()
365
+
366
+ image_uri = get_huggingface_llm_image_uri(
367
+ backend="huggingface", # or lmi
368
+ region=region,
369
+ version="1.1.0"
370
+ )
371
+
372
+ model_name = "MistralLite-" + time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime())
373
+
374
+ hub = {
375
+ 'HF_MODEL_ID':'amazon/MistralLite',
376
+ 'HF_TASK':'text-generation',
377
+ 'SM_NUM_GPUS':'1',
378
+ "MAX_INPUT_LENGTH": '16000',
379
+ "MAX_TOTAL_TOKENS": '16384',
380
+ "MAX_BATCH_PREFILL_TOKENS": '16384',
381
+ "MAX_BATCH_TOTAL_TOKENS": '16384',
382
+ }
383
+
384
+ model = HuggingFaceModel(
385
+ name=model_name,
386
+ env=hub,
387
+ role=role,
388
+ image_uri=image_uri
389
+ )
390
+ predictor = model.deploy(
391
+ initial_instance_count=1,
392
+ instance_type="ml.g5.2xlarge",
393
+ endpoint_name=model_name,
394
+
395
+ )
396
+ ```
397
+
398
+ ### Perform Inference ###
399
+ To call the endpoint, please follow the example code as below:
400
+
401
+ ```python
402
+ input_data = {
403
+ "inputs": "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>",
404
+ "parameters": {
405
+ "do_sample": False,
406
+ "max_new_tokens": 400,
407
+ "return_full_text": False,
408
+ #"typical_p": 0.2,
409
+ #"temperature":None,
410
+ #"truncate":None,
411
+ #"seed": 1,
412
+ }
413
+ }
414
+ result = predictor.predict(input_data)[0]["generated_text"]
415
+ print(result)
416
+ ```
417
+ or via [boto3](https://pypi.org/project/boto3/), and the example code is shown as below:
418
+
419
+ ```python
420
+ import boto3
421
+ import json
422
+ def call_endpoint(client, prompt, endpoint_name, paramters):
423
+ client = boto3.client("sagemaker-runtime")
424
+ payload = {"inputs": prompt,
425
+ "parameters": parameters}
426
+ response = client.invoke_endpoint(EndpointName=endpoint_name,
427
+ Body=json.dumps(payload),
428
+ ContentType="application/json")
429
+ output = json.loads(response["Body"].read().decode())
430
+ result = output[0]["generated_text"]
431
+ return result
432
+
433
+ client = boto3.client("sagemaker-runtime")
434
+ parameters = {
435
+ "do_sample": False,
436
+ "max_new_tokens": 400,
437
+ "return_full_text": False,
438
+ #"typical_p": 0.2,
439
+ #"temperature":None,
440
+ #"truncate":None,
441
+ #"seed": 1,
442
+ }
443
+ endpoint_name = predictor.endpoint_name
444
+ prompt = "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>"
445
+ result = call_endpoint(client, prompt, endpoint_name, parameters)
446
+ print(result)
447
+ ```
448
+
449
+
450
+ ## How to Serve MistralLite on vLLM ##
451
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
452
+
453
+ **Important** - For an end-to-end example Jupyter notebook, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/vllm/example_usage.ipynb).
454
+
455
+ ### Using vLLM as a server ###
456
+ When using vLLM as a server, pass the --model amazon/MistralLite parameter, for example:
457
+ ```shell
458
+ python3 -m vllm.entrypoints.api_server --model amazon/MistralLite
459
+ ```
460
+
461
+ ### Using vLLM in Python Code ###
462
+ When using vLLM from Python code, Please see the example code as below:
463
+
464
+ ```python
465
+ from vllm import LLM, SamplingParams
466
+
467
+ prompts = [
468
+ "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>",
469
+ ]
470
+ sampling_params = SamplingParams(temperature=0, max_tokens=100)
471
+
472
+ llm = LLM(model="amazon/MistralLite",)
473
+
474
+ outputs = llm.generate(prompts, sampling_params)
475
+
476
+ # Print the outputs.
477
+ for output in outputs:
478
+ prompt = output.prompt
479
+ generated_text = output.outputs[0].text
480
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
481
+ ```
482
+
483
+ ## Limitations ##
484
+ Before using the MistralLite model, it is important to perform your own independent assessment, and take measures to ensure that your use would comply with your own specific quality control practices and standards, and that your use would comply with the local rules, laws, regulations, licenses and terms that apply to you, and your content.
485
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
486
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_NurtureAI__MistralLite-11B)
487
+
488
+ | Metric |Value|
489
+ |---------------------------------|----:|
490
+ |Avg. |50.43|
491
+ |AI2 Reasoning Challenge (25-Shot)|57.68|
492
+ |HellaSwag (10-Shot) |79.54|
493
+ |MMLU (5-Shot) |50.09|
494
+ |TruthfulQA (0-shot) |38.27|
495
+ |Winogrande (5-shot) |76.64|
496
+ |GSM8k (5-shot) | 0.38|
497
+
498
+
499
+