RichardErkhov commited on
Commit
6bf45d8
1 Parent(s): e30f1b6

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +300 -0
README.md ADDED
@@ -0,0 +1,300 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ Pythia-31M-Chat-v1 - bnb 4bits
11
+ - Model creator: https://huggingface.co/Felladrin/
12
+ - Original model: https://huggingface.co/Felladrin/Pythia-31M-Chat-v1/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ language:
20
+ - en
21
+ license: apache-2.0
22
+ base_model: EleutherAI/pythia-31m
23
+ datasets:
24
+ - totally-not-an-llm/EverythingLM-data-V3
25
+ - databricks/databricks-dolly-15k
26
+ - THUDM/webglm-qa
27
+ - starfishmedical/webGPT_x_dolly
28
+ - Amod/mental_health_counseling_conversations
29
+ - sablo/oasst2_curated
30
+ - cognitivecomputations/wizard_vicuna_70k_unfiltered
31
+ - mlabonne/chatml_dpo_pairs
32
+ pipeline_tag: text-generation
33
+ widget:
34
+ - messages:
35
+ - role: system
36
+ content: >-
37
+ You are a career counselor. The user will provide you with an individual
38
+ looking for guidance in their professional life, and your task is to assist
39
+ them in determining what careers they are most suited for based on their skills,
40
+ interests, and experience. You should also conduct research into the various
41
+ options available, explain the job market trends in different industries, and
42
+ advice on which qualifications would be beneficial for pursuing particular fields.
43
+ - role: user
44
+ content: Heya!
45
+ - role: assistant
46
+ content: Hi! How may I help you?
47
+ - role: user
48
+ content: >-
49
+ I am interested in developing a career in software engineering. What
50
+ would you recommend me to do?
51
+ - messages:
52
+ - role: system
53
+ content: "You are a helpful assistant who answers user's questions with details and curiosity."
54
+ - role: user
55
+ content: What are some potential applications for quantum computing?
56
+ - messages:
57
+ - role: system
58
+ content: You are a highly knowledgeable assistant. Help the user as much as you can.
59
+ - role: user
60
+ content: What are some steps I can take to become a healthier person?
61
+ inference:
62
+ parameters:
63
+ max_new_tokens: 250
64
+ penalty_alpha: 0.5
65
+ top_k: 2
66
+ repetition_penalty: 1.0016
67
+ model-index:
68
+ - name: Pythia-31M-Chat-v1
69
+ results:
70
+ - task:
71
+ type: text-generation
72
+ name: Text Generation
73
+ dataset:
74
+ name: AI2 Reasoning Challenge (25-Shot)
75
+ type: ai2_arc
76
+ config: ARC-Challenge
77
+ split: test
78
+ args:
79
+ num_few_shot: 25
80
+ metrics:
81
+ - type: acc_norm
82
+ value: 22.7
83
+ name: normalized accuracy
84
+ source:
85
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Pythia-31M-Chat-v1
86
+ name: Open LLM Leaderboard
87
+ - task:
88
+ type: text-generation
89
+ name: Text Generation
90
+ dataset:
91
+ name: HellaSwag (10-Shot)
92
+ type: hellaswag
93
+ split: validation
94
+ args:
95
+ num_few_shot: 10
96
+ metrics:
97
+ - type: acc_norm
98
+ value: 25.6
99
+ name: normalized accuracy
100
+ source:
101
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Pythia-31M-Chat-v1
102
+ name: Open LLM Leaderboard
103
+ - task:
104
+ type: text-generation
105
+ name: Text Generation
106
+ dataset:
107
+ name: MMLU (5-Shot)
108
+ type: cais/mmlu
109
+ config: all
110
+ split: test
111
+ args:
112
+ num_few_shot: 5
113
+ metrics:
114
+ - type: acc
115
+ value: 23.24
116
+ name: accuracy
117
+ source:
118
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Pythia-31M-Chat-v1
119
+ name: Open LLM Leaderboard
120
+ - task:
121
+ type: text-generation
122
+ name: Text Generation
123
+ dataset:
124
+ name: Winogrande (5-shot)
125
+ type: winogrande
126
+ config: winogrande_xl
127
+ split: validation
128
+ args:
129
+ num_few_shot: 5
130
+ metrics:
131
+ - type: acc
132
+ value: 47.99
133
+ name: accuracy
134
+ source:
135
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Pythia-31M-Chat-v1
136
+ name: Open LLM Leaderboard
137
+ - task:
138
+ type: text-generation
139
+ name: Text Generation
140
+ dataset:
141
+ name: TruthfulQA (0-shot)
142
+ type: truthful_qa
143
+ config: multiple_choice
144
+ split: validation
145
+ args:
146
+ num_few_shot: 0
147
+ metrics:
148
+ - type: mc2
149
+ value: 0.0
150
+ source:
151
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Pythia-31M-Chat-v1
152
+ name: Open LLM Leaderboard
153
+ - task:
154
+ type: text-generation
155
+ name: Text Generation
156
+ dataset:
157
+ name: GSM8k (5-shot)
158
+ type: gsm8k
159
+ config: main
160
+ split: test
161
+ args:
162
+ num_few_shot: 5
163
+ metrics:
164
+ - type: acc
165
+ value: 0.0
166
+ name: accuracy
167
+ source:
168
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Pythia-31M-Chat-v1
169
+ name: Open LLM Leaderboard
170
+ ---
171
+
172
+ # A Pythia Chat Model of 31M Parameters
173
+
174
+ - Base model: [EleutherAI/pythia-31m](https://huggingface.co/EleutherAI/pythia-31m)
175
+ - Availability in other ML formats:
176
+ - GGUF: [Felladrin/gguf-Pythia-31M-Chat-v1](https://huggingface.co/Felladrin/gguf-Pythia-31M-Chat-v1)
177
+ - ONNX: [Felladrin/onnx-Pythia-31M-Chat-v1](https://huggingface.co/Felladrin/onnx-Pythia-31M-Chat-v1)
178
+
179
+ ## Recommended prompt format
180
+
181
+ ```
182
+ <|im_start|>system
183
+ {system_message}<|im_end|>
184
+ <|im_start|>user
185
+ {user_message}<|im_end|>
186
+ <|im_start|>assistant
187
+ ```
188
+
189
+ ## Recommended inference parameters
190
+
191
+ ```yml
192
+ penalty_alpha: 0.5
193
+ top_k: 2
194
+ repetition_penalty: 1.0016
195
+ ```
196
+
197
+ ## Datasets and parameters used for training
198
+
199
+ | Dataset | License Type |
200
+ |---------|--------------|
201
+ | [totally-not-an-llm/EverythingLM-data-V3](https://huggingface.co/datasets/totally-not-an-llm/EverythingLM-data-V3) | mit |
202
+ | [databricks/databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) | cc-by-sa-3.0 |
203
+ | [THUDM/webglm-qa](https://huggingface.co/datasets/THUDM/webglm-qa) | apache-2.0 |
204
+ | [starfishmedical/webGPT_x_dolly](https://huggingface.co/datasets/starfishmedical/webGPT_x_dolly) | cc-by-sa-3.0 |
205
+ | [Amod/mental_health_counseling_conversations](https://huggingface.co/datasets/Amod/mental_health_counseling_conversations) | openrail |
206
+ | [sablo/oasst2_curated](https://huggingface.co/datasets/sablo/oasst2_curated) | apache-2.0 |
207
+ | [cognitivecomputations/wizard_vicuna_70k_unfiltered](https://huggingface.co/datasets/cognitivecomputations/wizard_vicuna_70k_unfiltered) | apache-2.0 |
208
+ | [mlabonne/chatml_dpo_pairs](https://huggingface.co/datasets/mlabonne/chatml_dpo_pairs) | apache-2.0 |
209
+
210
+ ```python
211
+ SFTTrainer(
212
+ model,
213
+ train_dataset=train_dataset,
214
+ dataset_text_field="text",
215
+ eval_dataset=eval_dataset,
216
+ max_seq_length=2048,
217
+ packing=True,
218
+ args=TrainingArguments(
219
+ learning_rate=2e-6,
220
+ per_device_train_batch_size=1,
221
+ per_device_eval_batch_size=1,
222
+ gradient_accumulation_steps=16,
223
+ lr_scheduler_type="cosine",
224
+ num_train_epochs=1,
225
+ logging_strategy="steps",
226
+ save_strategy="steps",
227
+ evaluation_strategy="steps",
228
+ logging_steps=10,
229
+ eval_steps=10,
230
+ save_steps=10,
231
+ warmup_steps=50,
232
+ load_best_model_at_end=True,
233
+ metric_for_best_model="eval_loss",
234
+ greater_is_better=False,
235
+ weight_decay=0.01,
236
+ save_total_limit=10,
237
+ neftune_noise_alpha=5,
238
+ ),
239
+ callbacks=[
240
+ EarlyStoppingCallback(
241
+ early_stopping_patience=3,
242
+ early_stopping_threshold=0.005
243
+ ),
244
+ ],
245
+ )
246
+ ```
247
+
248
+ ```python
249
+ DPOTrainer(
250
+ model,
251
+ beta=0.1,
252
+ train_dataset=dataset,
253
+ tokenizer=tokenizer,
254
+ eval_dataset=eval_dataset,
255
+ max_length=1536,
256
+ max_prompt_length=1024,
257
+ args=TrainingArguments(
258
+ learning_rate=2e-6,
259
+ per_device_train_batch_size=1,
260
+ per_device_eval_batch_size=1,
261
+ gradient_accumulation_steps=1,
262
+ lr_scheduler_type="cosine",
263
+ num_train_epochs=1,
264
+ logging_strategy="steps",
265
+ save_strategy="steps",
266
+ evaluation_strategy="steps",
267
+ logging_steps=1,
268
+ eval_steps=1,
269
+ save_steps=1,
270
+ warmup_steps=0,
271
+ load_best_model_at_end=True,
272
+ metric_for_best_model="eval_loss",
273
+ greater_is_better=False,
274
+ weight_decay=0.0,
275
+ neftune_noise_alpha=5,
276
+ remove_unused_columns=False,
277
+ ),
278
+ callbacks=[
279
+ EarlyStoppingCallback(
280
+ early_stopping_patience=3,
281
+ early_stopping_threshold=0.005
282
+ ),
283
+ ],
284
+ )
285
+ ```
286
+
287
+ ## [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
288
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Felladrin__Pythia-31M-Chat-v1)
289
+
290
+ | Metric |Value|
291
+ |---------------------------------|----:|
292
+ |Avg. |19.92|
293
+ |AI2 Reasoning Challenge (25-Shot)|22.70|
294
+ |HellaSwag (10-Shot) |25.60|
295
+ |MMLU (5-Shot) |23.24|
296
+ |TruthfulQA (0-shot) | 0.00|
297
+ |Winogrande (5-shot) |47.99|
298
+ |GSM8k (5-shot) | 0.00|
299
+
300
+