RichardErkhov
commited on
Commit
•
6bf45d8
1
Parent(s):
e30f1b6
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
Pythia-31M-Chat-v1 - bnb 4bits
|
11 |
+
- Model creator: https://huggingface.co/Felladrin/
|
12 |
+
- Original model: https://huggingface.co/Felladrin/Pythia-31M-Chat-v1/
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
Original model description:
|
18 |
+
---
|
19 |
+
language:
|
20 |
+
- en
|
21 |
+
license: apache-2.0
|
22 |
+
base_model: EleutherAI/pythia-31m
|
23 |
+
datasets:
|
24 |
+
- totally-not-an-llm/EverythingLM-data-V3
|
25 |
+
- databricks/databricks-dolly-15k
|
26 |
+
- THUDM/webglm-qa
|
27 |
+
- starfishmedical/webGPT_x_dolly
|
28 |
+
- Amod/mental_health_counseling_conversations
|
29 |
+
- sablo/oasst2_curated
|
30 |
+
- cognitivecomputations/wizard_vicuna_70k_unfiltered
|
31 |
+
- mlabonne/chatml_dpo_pairs
|
32 |
+
pipeline_tag: text-generation
|
33 |
+
widget:
|
34 |
+
- messages:
|
35 |
+
- role: system
|
36 |
+
content: >-
|
37 |
+
You are a career counselor. The user will provide you with an individual
|
38 |
+
looking for guidance in their professional life, and your task is to assist
|
39 |
+
them in determining what careers they are most suited for based on their skills,
|
40 |
+
interests, and experience. You should also conduct research into the various
|
41 |
+
options available, explain the job market trends in different industries, and
|
42 |
+
advice on which qualifications would be beneficial for pursuing particular fields.
|
43 |
+
- role: user
|
44 |
+
content: Heya!
|
45 |
+
- role: assistant
|
46 |
+
content: Hi! How may I help you?
|
47 |
+
- role: user
|
48 |
+
content: >-
|
49 |
+
I am interested in developing a career in software engineering. What
|
50 |
+
would you recommend me to do?
|
51 |
+
- messages:
|
52 |
+
- role: system
|
53 |
+
content: "You are a helpful assistant who answers user's questions with details and curiosity."
|
54 |
+
- role: user
|
55 |
+
content: What are some potential applications for quantum computing?
|
56 |
+
- messages:
|
57 |
+
- role: system
|
58 |
+
content: You are a highly knowledgeable assistant. Help the user as much as you can.
|
59 |
+
- role: user
|
60 |
+
content: What are some steps I can take to become a healthier person?
|
61 |
+
inference:
|
62 |
+
parameters:
|
63 |
+
max_new_tokens: 250
|
64 |
+
penalty_alpha: 0.5
|
65 |
+
top_k: 2
|
66 |
+
repetition_penalty: 1.0016
|
67 |
+
model-index:
|
68 |
+
- name: Pythia-31M-Chat-v1
|
69 |
+
results:
|
70 |
+
- task:
|
71 |
+
type: text-generation
|
72 |
+
name: Text Generation
|
73 |
+
dataset:
|
74 |
+
name: AI2 Reasoning Challenge (25-Shot)
|
75 |
+
type: ai2_arc
|
76 |
+
config: ARC-Challenge
|
77 |
+
split: test
|
78 |
+
args:
|
79 |
+
num_few_shot: 25
|
80 |
+
metrics:
|
81 |
+
- type: acc_norm
|
82 |
+
value: 22.7
|
83 |
+
name: normalized accuracy
|
84 |
+
source:
|
85 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Pythia-31M-Chat-v1
|
86 |
+
name: Open LLM Leaderboard
|
87 |
+
- task:
|
88 |
+
type: text-generation
|
89 |
+
name: Text Generation
|
90 |
+
dataset:
|
91 |
+
name: HellaSwag (10-Shot)
|
92 |
+
type: hellaswag
|
93 |
+
split: validation
|
94 |
+
args:
|
95 |
+
num_few_shot: 10
|
96 |
+
metrics:
|
97 |
+
- type: acc_norm
|
98 |
+
value: 25.6
|
99 |
+
name: normalized accuracy
|
100 |
+
source:
|
101 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Pythia-31M-Chat-v1
|
102 |
+
name: Open LLM Leaderboard
|
103 |
+
- task:
|
104 |
+
type: text-generation
|
105 |
+
name: Text Generation
|
106 |
+
dataset:
|
107 |
+
name: MMLU (5-Shot)
|
108 |
+
type: cais/mmlu
|
109 |
+
config: all
|
110 |
+
split: test
|
111 |
+
args:
|
112 |
+
num_few_shot: 5
|
113 |
+
metrics:
|
114 |
+
- type: acc
|
115 |
+
value: 23.24
|
116 |
+
name: accuracy
|
117 |
+
source:
|
118 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Pythia-31M-Chat-v1
|
119 |
+
name: Open LLM Leaderboard
|
120 |
+
- task:
|
121 |
+
type: text-generation
|
122 |
+
name: Text Generation
|
123 |
+
dataset:
|
124 |
+
name: Winogrande (5-shot)
|
125 |
+
type: winogrande
|
126 |
+
config: winogrande_xl
|
127 |
+
split: validation
|
128 |
+
args:
|
129 |
+
num_few_shot: 5
|
130 |
+
metrics:
|
131 |
+
- type: acc
|
132 |
+
value: 47.99
|
133 |
+
name: accuracy
|
134 |
+
source:
|
135 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Pythia-31M-Chat-v1
|
136 |
+
name: Open LLM Leaderboard
|
137 |
+
- task:
|
138 |
+
type: text-generation
|
139 |
+
name: Text Generation
|
140 |
+
dataset:
|
141 |
+
name: TruthfulQA (0-shot)
|
142 |
+
type: truthful_qa
|
143 |
+
config: multiple_choice
|
144 |
+
split: validation
|
145 |
+
args:
|
146 |
+
num_few_shot: 0
|
147 |
+
metrics:
|
148 |
+
- type: mc2
|
149 |
+
value: 0.0
|
150 |
+
source:
|
151 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Pythia-31M-Chat-v1
|
152 |
+
name: Open LLM Leaderboard
|
153 |
+
- task:
|
154 |
+
type: text-generation
|
155 |
+
name: Text Generation
|
156 |
+
dataset:
|
157 |
+
name: GSM8k (5-shot)
|
158 |
+
type: gsm8k
|
159 |
+
config: main
|
160 |
+
split: test
|
161 |
+
args:
|
162 |
+
num_few_shot: 5
|
163 |
+
metrics:
|
164 |
+
- type: acc
|
165 |
+
value: 0.0
|
166 |
+
name: accuracy
|
167 |
+
source:
|
168 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Pythia-31M-Chat-v1
|
169 |
+
name: Open LLM Leaderboard
|
170 |
+
---
|
171 |
+
|
172 |
+
# A Pythia Chat Model of 31M Parameters
|
173 |
+
|
174 |
+
- Base model: [EleutherAI/pythia-31m](https://huggingface.co/EleutherAI/pythia-31m)
|
175 |
+
- Availability in other ML formats:
|
176 |
+
- GGUF: [Felladrin/gguf-Pythia-31M-Chat-v1](https://huggingface.co/Felladrin/gguf-Pythia-31M-Chat-v1)
|
177 |
+
- ONNX: [Felladrin/onnx-Pythia-31M-Chat-v1](https://huggingface.co/Felladrin/onnx-Pythia-31M-Chat-v1)
|
178 |
+
|
179 |
+
## Recommended prompt format
|
180 |
+
|
181 |
+
```
|
182 |
+
<|im_start|>system
|
183 |
+
{system_message}<|im_end|>
|
184 |
+
<|im_start|>user
|
185 |
+
{user_message}<|im_end|>
|
186 |
+
<|im_start|>assistant
|
187 |
+
```
|
188 |
+
|
189 |
+
## Recommended inference parameters
|
190 |
+
|
191 |
+
```yml
|
192 |
+
penalty_alpha: 0.5
|
193 |
+
top_k: 2
|
194 |
+
repetition_penalty: 1.0016
|
195 |
+
```
|
196 |
+
|
197 |
+
## Datasets and parameters used for training
|
198 |
+
|
199 |
+
| Dataset | License Type |
|
200 |
+
|---------|--------------|
|
201 |
+
| [totally-not-an-llm/EverythingLM-data-V3](https://huggingface.co/datasets/totally-not-an-llm/EverythingLM-data-V3) | mit |
|
202 |
+
| [databricks/databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) | cc-by-sa-3.0 |
|
203 |
+
| [THUDM/webglm-qa](https://huggingface.co/datasets/THUDM/webglm-qa) | apache-2.0 |
|
204 |
+
| [starfishmedical/webGPT_x_dolly](https://huggingface.co/datasets/starfishmedical/webGPT_x_dolly) | cc-by-sa-3.0 |
|
205 |
+
| [Amod/mental_health_counseling_conversations](https://huggingface.co/datasets/Amod/mental_health_counseling_conversations) | openrail |
|
206 |
+
| [sablo/oasst2_curated](https://huggingface.co/datasets/sablo/oasst2_curated) | apache-2.0 |
|
207 |
+
| [cognitivecomputations/wizard_vicuna_70k_unfiltered](https://huggingface.co/datasets/cognitivecomputations/wizard_vicuna_70k_unfiltered) | apache-2.0 |
|
208 |
+
| [mlabonne/chatml_dpo_pairs](https://huggingface.co/datasets/mlabonne/chatml_dpo_pairs) | apache-2.0 |
|
209 |
+
|
210 |
+
```python
|
211 |
+
SFTTrainer(
|
212 |
+
model,
|
213 |
+
train_dataset=train_dataset,
|
214 |
+
dataset_text_field="text",
|
215 |
+
eval_dataset=eval_dataset,
|
216 |
+
max_seq_length=2048,
|
217 |
+
packing=True,
|
218 |
+
args=TrainingArguments(
|
219 |
+
learning_rate=2e-6,
|
220 |
+
per_device_train_batch_size=1,
|
221 |
+
per_device_eval_batch_size=1,
|
222 |
+
gradient_accumulation_steps=16,
|
223 |
+
lr_scheduler_type="cosine",
|
224 |
+
num_train_epochs=1,
|
225 |
+
logging_strategy="steps",
|
226 |
+
save_strategy="steps",
|
227 |
+
evaluation_strategy="steps",
|
228 |
+
logging_steps=10,
|
229 |
+
eval_steps=10,
|
230 |
+
save_steps=10,
|
231 |
+
warmup_steps=50,
|
232 |
+
load_best_model_at_end=True,
|
233 |
+
metric_for_best_model="eval_loss",
|
234 |
+
greater_is_better=False,
|
235 |
+
weight_decay=0.01,
|
236 |
+
save_total_limit=10,
|
237 |
+
neftune_noise_alpha=5,
|
238 |
+
),
|
239 |
+
callbacks=[
|
240 |
+
EarlyStoppingCallback(
|
241 |
+
early_stopping_patience=3,
|
242 |
+
early_stopping_threshold=0.005
|
243 |
+
),
|
244 |
+
],
|
245 |
+
)
|
246 |
+
```
|
247 |
+
|
248 |
+
```python
|
249 |
+
DPOTrainer(
|
250 |
+
model,
|
251 |
+
beta=0.1,
|
252 |
+
train_dataset=dataset,
|
253 |
+
tokenizer=tokenizer,
|
254 |
+
eval_dataset=eval_dataset,
|
255 |
+
max_length=1536,
|
256 |
+
max_prompt_length=1024,
|
257 |
+
args=TrainingArguments(
|
258 |
+
learning_rate=2e-6,
|
259 |
+
per_device_train_batch_size=1,
|
260 |
+
per_device_eval_batch_size=1,
|
261 |
+
gradient_accumulation_steps=1,
|
262 |
+
lr_scheduler_type="cosine",
|
263 |
+
num_train_epochs=1,
|
264 |
+
logging_strategy="steps",
|
265 |
+
save_strategy="steps",
|
266 |
+
evaluation_strategy="steps",
|
267 |
+
logging_steps=1,
|
268 |
+
eval_steps=1,
|
269 |
+
save_steps=1,
|
270 |
+
warmup_steps=0,
|
271 |
+
load_best_model_at_end=True,
|
272 |
+
metric_for_best_model="eval_loss",
|
273 |
+
greater_is_better=False,
|
274 |
+
weight_decay=0.0,
|
275 |
+
neftune_noise_alpha=5,
|
276 |
+
remove_unused_columns=False,
|
277 |
+
),
|
278 |
+
callbacks=[
|
279 |
+
EarlyStoppingCallback(
|
280 |
+
early_stopping_patience=3,
|
281 |
+
early_stopping_threshold=0.005
|
282 |
+
),
|
283 |
+
],
|
284 |
+
)
|
285 |
+
```
|
286 |
+
|
287 |
+
## [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
288 |
+
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Felladrin__Pythia-31M-Chat-v1)
|
289 |
+
|
290 |
+
| Metric |Value|
|
291 |
+
|---------------------------------|----:|
|
292 |
+
|Avg. |19.92|
|
293 |
+
|AI2 Reasoning Challenge (25-Shot)|22.70|
|
294 |
+
|HellaSwag (10-Shot) |25.60|
|
295 |
+
|MMLU (5-Shot) |23.24|
|
296 |
+
|TruthfulQA (0-shot) | 0.00|
|
297 |
+
|Winogrande (5-shot) |47.99|
|
298 |
+
|GSM8k (5-shot) | 0.00|
|
299 |
+
|
300 |
+
|