File size: 2,128 Bytes
4fefeef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-cifar10
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-cifar10
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0760
- Accuracy: 0.9758
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.314 | 1.0 | 176 | 0.1211 | 0.9612 |
| 0.2992 | 2.0 | 352 | 0.1186 | 0.9622 |
| 0.3544 | 3.0 | 528 | 0.0989 | 0.968 |
| 0.3068 | 4.0 | 704 | 0.0872 | 0.9724 |
| 0.3421 | 5.0 | 880 | 0.0858 | 0.972 |
| 0.2915 | 6.0 | 1056 | 0.0824 | 0.9724 |
| 0.3051 | 7.0 | 1232 | 0.0822 | 0.974 |
| 0.2849 | 8.0 | 1408 | 0.0770 | 0.975 |
| 0.2661 | 9.0 | 1584 | 0.0773 | 0.9756 |
| 0.2504 | 10.0 | 1760 | 0.0760 | 0.9758 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2
- Datasets 2.16.1
- Tokenizers 0.15.0
|