File size: 9,902 Bytes
a6ea28d
 
 
 
 
 
 
c85f333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6ea28d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
---
license: cc
language:
- en
- ur
- hi
---

## ___***VideoCrafter2: Overcoming Data Limitations for High-Quality Video Diffusion Models***___

<a href='https://ailab-cvc.github.io/videocrafter2/'><img src='https://img.shields.io/badge/Project-Page-green'></a> 
<a href='https://arxiv.org/abs/2401.09047'><img src='https://img.shields.io/badge/Technique-Report-red'></a> 
[![Discord](https://dcbadge.vercel.app/api/server/rrayYqZ4tf?style=flat)](https://discord.gg/rrayYqZ4tf)
<a href='https://huggingface.co/spaces/VideoCrafter/VideoCrafter'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue'></a>
[![GitHub](https://img.shields.io/github/stars/VideoCrafter/VideoCrafter?style=social)](https://github.com/VideoCrafter/VideoCrafter)

### πŸ”₯πŸ”₯ Our dedicated high-resolution I2V model is released at: :point_right:[DynamiCrafter](https://github.com/Doubiiu/DynamiCrafter)!!!

[![](https://img.youtube.com/vi/0NfmIsNAg-g/0.jpg)](https://www.youtube.com/watch?v=0NfmIsNAg-g)

### πŸ”₯The VideoCrafter2 Large improvements over VideoCrafter1 with limited data. Better Motion, Better Concept Combination!!!

Please Join us and create your own film on [Discord/Floor33](https://discord.gg/rrayYqZ4tf).

##### πŸŽ₯ Exquisite film, produced by VideoCrafter2, directed by Human
 [![IMAGE ALT TEXT HERE](https://img.youtube.com/vi/TUsFkW0tK-s/0.jpg)](https://www.youtube.com/watch?v=TUsFkW0tK-s)
 
## πŸ”† Introduction

πŸ€—πŸ€—πŸ€— VideoCrafter is an open-source video generation and editing toolbox for crafting video content.   
It currently includes the Text2Video and Image2Video models:

### 1. Generic Text-to-video Generation
Click the GIF to access the high-resolution video.

<table class="center">
  <td><a href="https://github.com/AILab-CVC/VideoCrafter/assets/18735168/d20ee09d-fc32-44a8-9e9a-f12f44b30411"><img src=assets/t2v/tom.gif width="320"></td>
  <td><a href="https://github.com/AILab-CVC/VideoCrafter/assets/18735168/f1d9f434-28e8-44f6-a9b8-cffd67e4574d"><img src=assets/t2v/child.gif width="320"></td>
  <td><a href="https://github.com/AILab-CVC/VideoCrafter/assets/18735168/bbcfef0e-d8fb-4850-adc0-d8f937c2fa36"><img src=assets/t2v/woman.gif width="320"></td>
  <tr>
  <td style="text-align:center;" width="320">"Tom Cruise's face reflects focus, his eyes filled with purpose and drive."</td>
  <td style="text-align:center;" width="320">"A child excitedly swings on a rusty swing set, laughter filling the air."</td>
  <td style="text-align:center;" width="320">"A young woman with glasses is jogging in the park wearing a pink headband."</td>
  <tr>
</table >

<table class="center">
  <td><a href="https://github.com/AILab-CVC/VideoCrafter/assets/18735168/7edafc5a-750e-45f3-a46e-b593751a4b12"><img src=assets/t2v/couple.gif width="320"></td>
  <td><a href="https://github.com/AILab-CVC/VideoCrafter/assets/18735168/37fe41c8-31fb-4e77-bcf9-fa159baa6d86"><img src=assets/t2v/rabbit.gif width="320"></td>
  <td><a href="https://github.com/AILab-CVC/VideoCrafter/assets/18735168/09791a46-a243-41b8-a6bb-892cdd3a83a2"><img src=assets/t2v/duck.gif width="320"></td>
  <tr>
  <td style="text-align:center;" width="320">"With the style of van gogh, A young couple dances under the moonlight by the lake."</td>
  <td style="text-align:center;" width="320">"A rabbit, low-poly game art style"</td>
  <td style="text-align:center;" width="320">"Impressionist style, a yellow rubber duck floating on the wave on the sunset"</td>
  <tr>
</table >

### 2. Generic Image-to-video Generation

<table class="center">
  <td><img src=assets/i2v/input/blackswan.png width="170"></td>
  <td><img src=assets/i2v/input/horse.png width="170"></td>
  <td><img src=assets/i2v/input/chair.png width="170"></td>
  <td><img src=assets/i2v/input/sunset.png width="170"></td>
  <tr>
  <td><a href="https://github.com/AILab-CVC/VideoCrafter/assets/18735168/1a57edd9-3fd2-4ce9-8313-89aca95b6ec7"><img src=assets/i2v/blackswan.gif width="170"></td>
  <td><a href="https://github.com/AILab-CVC/VideoCrafter/assets/18735168/d671419d-ae49-4889-807e-b841aef60e8a"><img src=assets/i2v/horse.gif width="170"></td>
  <td><a href="https://github.com/AILab-CVC/VideoCrafter/assets/18735168/39d730d9-7b47-4132-bdae-4d18f3e651ee"><img src=assets/i2v/chair.gif width="170"></td>
  <td><a href="https://github.com/AILab-CVC/VideoCrafter/assets/18735168/dc8dd0d5-a80d-4f31-94db-f9ea0b13172b"><img src=assets/i2v/sunset.gif width="170"></td>
  <tr>
  <td style="text-align:center;" width="170">"a black swan swims on the pond"</td>
  <td style="text-align:center;" width="170">"a girl is riding a horse fast on grassland"</td>
  <td style="text-align:center;" width="170">"a boy sits on a chair facing the sea"</td>
  <td style="text-align:center;" width="170">"two galleons moving in the wind at sunset"</td>

</table >

:boom: **You are highly recommended to try our dedicated I2V model [DynamiCrafter](https://github.com/Doubiiu/DynamiCrafter): Higher resolution, Better Dynamics, More Coherence!!!**

---

## πŸ“ Changelog
- __[2024.02.05]__: πŸ”₯πŸ”₯ Release new I2V model with the resolution of 640x1024 of VideoCrafter1/DynamiCrafter. 

- __[2024.01.26]__: Release the 512x320 checkpoint of VideoCrafter2. 

- __[2024.01.18]__: Release the [VideoCrafter2](https://ailab-cvc.github.io/videocrafter2/) and [Tech Report](https://arxiv.org/abs/2401.09047)!

- __[2023.10.30]__: Release [VideoCrafter1](https://arxiv.org/abs/2310.19512) Technical Report!

- __[2023.10.13]__: Release the VideoCrafter1, High Quality Video Generation!

- __[2023.08.14]__: Release a new version of VideoCrafter on [Discord/Floor33](https://discord.gg/uHaQuThT). Please join us to create your own film!

- __[2023.04.18]__: Release a VideoControl model with most of the watermarks removed!

- __[2023.04.05]__: Release pretrained Text-to-Video models, VideoLora models, and inference code.
<br>


## ⏳ Models

|T2V-Models|Resolution|Checkpoints|
|:---------|:---------|:--------|
|VideoCrafter2|320x512|[Hugging Face](https://huggingface.co/VideoCrafter/VideoCrafter2/blob/main/model.ckpt)
|VideoCrafter1|576x1024|[Hugging Face](https://huggingface.co/VideoCrafter/Text2Video-1024/blob/main/model.ckpt)
|VideoCrafter1|320x512|[Hugging Face](https://huggingface.co/VideoCrafter/Text2Video-512/blob/main/model.ckpt)

|I2V-Models|Resolution|Checkpoints|
|:---------|:---------|:--------|
|VideoCrafter1|640x1024|[Hugging Face](https://huggingface.co/Doubiiu/DynamiCrafter_1024/blob/main/model.ckpt)
|VideoCrafter1|320x512|[Hugging Face](https://huggingface.co/VideoCrafter/Image2Video-512/blob/main/model.ckpt)



## βš™οΈ Setup

### 1. Install Environment via Anaconda (Recommended)
```bash
conda create -n videocrafter python=3.8.5
conda activate videocrafter
pip install -r requirements.txt
```


## πŸ’« Inference 
### 1. Text-to-Video

1) Download pretrained T2V models via [Hugging Face](https://huggingface.co/VideoCrafter/VideoCrafter2/blob/main/model.ckpt), and put the `model.ckpt` in `checkpoints/base_512_v2/model.ckpt`.
2) Input the following commands in terminal.
```bash
  sh scripts/run_text2video.sh
```

### 2. Image-to-Video

1) Download pretrained I2V models via [Hugging Face](https://huggingface.co/VideoCrafter/Image2Video-512-v1.0/blob/main/model.ckpt), and put the `model.ckpt` in `checkpoints/i2v_512_v1/model.ckpt`.
2) Input the following commands in terminal.
```bash
  sh scripts/run_image2video.sh
```

### 3. Local Gradio demo

1. Download the pretrained T2V and I2V models and put them in the corresponding directory according to the previous guidelines.
2. Input the following commands in terminal.
```bash
  python gradio_app.py
```

---
## πŸ“‹ Techinical Report
πŸ˜‰ VideoCrafter2 Tech report: [VideoCrafter2: Overcoming Data Limitations for High-Quality Video Diffusion Models](https://arxiv.org/abs/2401.09047)

πŸ˜‰ VideoCrafter1 Tech report: [VideoCrafter1: Open Diffusion Models for High-Quality Video Generation](https://arxiv.org/abs/2310.19512)
<br>

## πŸ˜‰ Citation
The technical report is currently unavailable as it is still in preparation. You can cite the paper of our image-to-video model and related base model.
```
@misc{chen2024videocrafter2,
      title={VideoCrafter2: Overcoming Data Limitations for High-Quality Video Diffusion Models}, 
      author={Haoxin Chen and Yong Zhang and Xiaodong Cun and Menghan Xia and Xintao Wang and Chao Weng and Ying Shan},
      year={2024},
      eprint={2401.09047},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{chen2023videocrafter1,
      title={VideoCrafter1: Open Diffusion Models for High-Quality Video Generation}, 
      author={Haoxin Chen and Menghan Xia and Yingqing He and Yong Zhang and Xiaodong Cun and Shaoshu Yang and Jinbo Xing and Yaofang Liu and Qifeng Chen and Xintao Wang and Chao Weng and Ying Shan},
      year={2023},
      eprint={2310.19512},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@article{xing2023dynamicrafter,
      title={DynamiCrafter: Animating Open-domain Images with Video Diffusion Priors}, 
      author={Jinbo Xing and Menghan Xia and Yong Zhang and Haoxin Chen and Xintao Wang and Tien-Tsin Wong and Ying Shan},
      year={2023},
      eprint={2310.12190},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@article{he2022lvdm,
      title={Latent Video Diffusion Models for High-Fidelity Long Video Generation}, 
      author={Yingqing He and Tianyu Yang and Yong Zhang and Ying Shan and Qifeng Chen},
      year={2022},
      eprint={2211.13221},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```


## πŸ€— Acknowledgements
Our codebase builds on [Stable Diffusion](https://github.com/Stability-AI/stablediffusion). 
Thanks the authors for sharing their awesome codebases! 


## πŸ“’ Disclaimer
We develop this repository for RESEARCH purposes, so it can only be used for personal/research/non-commercial purposes.
****