File size: 5,411 Bytes
eb29d0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import torch
from torch import nn
import torch.nn.functional as F
from einops.layers.torch import Rearrange
from ring_attention_pytorch import RingAttention
# helper functions
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def calc_same_padding(kernel_size):
pad = kernel_size // 2
return (pad, pad - (kernel_size + 1) % 2)
# helper classes
class Swish(nn.Module):
def forward(self, x):
return x * x.sigmoid()
class GLU(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, x):
out, gate = x.chunk(2, dim=self.dim)
return out * gate.sigmoid()
class DepthWiseConv1d(nn.Module):
def __init__(self, chan_in, chan_out, kernel_size, padding):
super().__init__()
self.padding = padding
self.conv = nn.Conv1d(chan_in, chan_out, kernel_size, groups=chan_in)
def forward(self, x):
x = F.pad(x, self.padding)
return self.conv(x)
# attention, feedforward, and conv module
class Scale(nn.Module):
def __init__(self, scale, fn):
super().__init__()
self.fn = fn
self.scale = scale
def forward(self, x, **kwargs):
return self.fn(x, **kwargs) * self.scale
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.fn = fn
self.norm = nn.LayerNorm(dim)
def forward(self, x, **kwargs):
x = self.norm(x.to(x.device))
out = self.fn(x.to(x.device), **kwargs)
return out
class FeedForward(nn.Module):
def __init__(self, dim, mult=4, dropout=0.0):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, dim * mult),
Swish(),
nn.Dropout(dropout),
nn.Linear(dim * mult, dim),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class ConformerConvModule(nn.Module):
def __init__(
self, dim, causal=False, expansion_factor=2, kernel_size=31, dropout=0.0
):
super().__init__()
inner_dim = dim * expansion_factor
padding = calc_same_padding(kernel_size) if not causal else (kernel_size - 1, 0)
self.net = nn.Sequential(
nn.LayerNorm(dim),
Rearrange("b n c -> b c n"),
nn.Conv1d(dim, inner_dim * 2, 1),
GLU(dim=1),
DepthWiseConv1d(
inner_dim, inner_dim, kernel_size=kernel_size, padding=padding
),
nn.BatchNorm1d(inner_dim) if not causal else nn.Identity(),
Swish(),
nn.Conv1d(inner_dim, dim, 1),
Rearrange("b c n -> b n c"),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
# Conformer Block
class ConformerBlock(nn.Module):
def __init__(
self,
*,
dim,
dim_head=64,
heads=8,
ff_mult=4,
conv_expansion_factor=2,
conv_kernel_size=31,
attn_dropout=0.0,
ff_dropout=0.0,
conv_dropout=0.0,
conv_causal=False
):
super().__init__()
self.ff1 = FeedForward(dim=dim, mult=ff_mult, dropout=ff_dropout)
self.attn = RingAttention(
dim=dim,
dim_head=dim_head,
heads=heads,
causal=True,
auto_shard_seq=False, # doesn't work on multi-gpu setup for some reason
ring_attn=True,
ring_seq_size=512,
)
self.self_attn_dropout = torch.nn.Dropout(attn_dropout)
self.conv = ConformerConvModule(
dim=dim,
causal=conv_causal,
expansion_factor=conv_expansion_factor,
kernel_size=conv_kernel_size,
dropout=conv_dropout,
)
self.ff2 = FeedForward(dim=dim, mult=ff_mult, dropout=ff_dropout)
self.attn = PreNorm(dim, self.attn)
self.ff1 = Scale(0.5, PreNorm(dim, self.ff1))
self.ff2 = Scale(0.5, PreNorm(dim, self.ff2))
self.post_norm = nn.LayerNorm(dim)
def forward(self, x, mask=None):
x_ff1 = self.ff1(x) + x
x = self.attn(x, mask=mask)
x = self.self_attn_dropout(x)
x = x + x_ff1
x = self.conv(x) + x
x = self.ff2(x) + x
x = self.post_norm(x)
return x
# Conformer
class Conformer(nn.Module):
def __init__(
self,
dim,
*,
depth,
dim_head=64,
heads=8,
ff_mult=4,
conv_expansion_factor=2,
conv_kernel_size=31,
attn_dropout=0.0,
ff_dropout=0.0,
conv_dropout=0.0,
conv_causal=False
):
super().__init__()
self.dim = dim
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
ConformerBlock(
dim=dim,
dim_head=dim_head,
heads=heads,
ff_mult=ff_mult,
conv_expansion_factor=conv_expansion_factor,
conv_kernel_size=conv_kernel_size,
conv_causal=conv_causal,
)
)
def forward(self, x):
for block in self.layers:
x = block(x)
return x |