Edit model card

N_bert_agnews_padding30model

This model is a fine-tuned version of bert-base-uncased on the ag_news dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5638
  • Accuracy: 0.9464

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1818 1.0 7500 0.1926 0.9422
0.1395 2.0 15000 0.2087 0.9454
0.1138 3.0 22500 0.2287 0.9446
0.0858 4.0 30000 0.2681 0.9475
0.0569 5.0 37500 0.2953 0.9451
0.0421 6.0 45000 0.3934 0.9408
0.0363 7.0 52500 0.3943 0.9408
0.0283 8.0 60000 0.4069 0.9414
0.0165 9.0 67500 0.4448 0.9433
0.0142 10.0 75000 0.4708 0.9445
0.0134 11.0 82500 0.4708 0.9432
0.0089 12.0 90000 0.5035 0.9414
0.0083 13.0 97500 0.5031 0.9430
0.0064 14.0 105000 0.4990 0.9432
0.0046 15.0 112500 0.5265 0.945
0.0032 16.0 120000 0.5370 0.9449
0.0035 17.0 127500 0.5445 0.9447
0.0018 18.0 135000 0.5548 0.9462
0.0031 19.0 142500 0.5627 0.9454
0.0002 20.0 150000 0.5638 0.9464

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Realgon/N_bert_agnews_padding30model

Finetuned
(2028)
this model

Dataset used to train Realgon/N_bert_agnews_padding30model

Evaluation results