N_bert_agnews_padding30model
This model is a fine-tuned version of bert-base-uncased on the ag_news dataset. It achieves the following results on the evaluation set:
- Loss: 0.5638
- Accuracy: 0.9464
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.1818 | 1.0 | 7500 | 0.1926 | 0.9422 |
0.1395 | 2.0 | 15000 | 0.2087 | 0.9454 |
0.1138 | 3.0 | 22500 | 0.2287 | 0.9446 |
0.0858 | 4.0 | 30000 | 0.2681 | 0.9475 |
0.0569 | 5.0 | 37500 | 0.2953 | 0.9451 |
0.0421 | 6.0 | 45000 | 0.3934 | 0.9408 |
0.0363 | 7.0 | 52500 | 0.3943 | 0.9408 |
0.0283 | 8.0 | 60000 | 0.4069 | 0.9414 |
0.0165 | 9.0 | 67500 | 0.4448 | 0.9433 |
0.0142 | 10.0 | 75000 | 0.4708 | 0.9445 |
0.0134 | 11.0 | 82500 | 0.4708 | 0.9432 |
0.0089 | 12.0 | 90000 | 0.5035 | 0.9414 |
0.0083 | 13.0 | 97500 | 0.5031 | 0.9430 |
0.0064 | 14.0 | 105000 | 0.4990 | 0.9432 |
0.0046 | 15.0 | 112500 | 0.5265 | 0.945 |
0.0032 | 16.0 | 120000 | 0.5370 | 0.9449 |
0.0035 | 17.0 | 127500 | 0.5445 | 0.9447 |
0.0018 | 18.0 | 135000 | 0.5548 | 0.9462 |
0.0031 | 19.0 | 142500 | 0.5627 | 0.9454 |
0.0002 | 20.0 | 150000 | 0.5638 | 0.9464 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Realgon/N_bert_agnews_padding30model
Base model
google-bert/bert-base-uncased