Edit model card

N_bert_agnews_padding20model

This model is a fine-tuned version of bert-base-uncased on the ag_news dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5675
  • Accuracy: 0.9482

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.178 1.0 7500 0.2016 0.9387
0.1359 2.0 15000 0.1994 0.9463
0.1199 3.0 22500 0.2296 0.9439
0.0893 4.0 30000 0.2822 0.9433
0.0632 5.0 37500 0.2953 0.9384
0.0441 6.0 45000 0.3583 0.9458
0.0337 7.0 52500 0.3966 0.9433
0.0287 8.0 60000 0.4296 0.9434
0.0241 9.0 67500 0.4442 0.9414
0.0118 10.0 75000 0.5066 0.9405
0.0166 11.0 82500 0.4644 0.94
0.0118 12.0 90000 0.4789 0.9409
0.0115 13.0 97500 0.5151 0.9443
0.0075 14.0 105000 0.4855 0.9458
0.007 15.0 112500 0.5377 0.9430
0.0058 16.0 120000 0.5308 0.9458
0.0024 17.0 127500 0.5328 0.9451
0.0014 18.0 135000 0.5569 0.9462
0.0023 19.0 142500 0.5646 0.9480
0.0019 20.0 150000 0.5675 0.9482

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Realgon/N_bert_agnews_padding20model

Finetuned
(1934)
this model

Dataset used to train Realgon/N_bert_agnews_padding20model

Evaluation results