File size: 4,009 Bytes
cf47967 617a948 cf47967 2edfb96 cf47967 2edfb96 cf47967 617a948 cf47967 617a948 cf47967 2edfb96 cf47967 617a948 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
---
library_name: transformers
license: apache-2.0
base_model: HuggingFaceTB/SmolLM2-360M
tags:
- generated_from_trainer
- axolotl
datasets:
- ReDiX/everyday-conversations-ita
- ReDiX/DataForge
language:
- it
- en
pipeline_tag: text-generation
---
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.5.0`
```yaml
base_model: HuggingFaceTB/SmolLM2-360M
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: ./dataforge
type: chat_template
field_messages: conversations
message_field_role: from
message_field_content: value
- path: HuggingFaceTB/smol-smoltalk
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
chat_template: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./outputs/smollm360m
sequence_len: 8192
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
wandb_project: axolotl
wandb_entity:
wandb_watch:
wandb_name: smollm2
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 1.0e-03
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 5
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: "<|im_end|>"
eos_token: "<|im_end|>"
```
</details><br>
# SmolLM2 360M Instruct ITA
This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-360M](https://huggingface.co/HuggingFaceTB/SmolLM2-360M) on the [smol-smoltalk](https://huggingface.co/datasets/HuggingFaceTB/smol-smoltalk) dataset and on the [ReDiX/DataForge](https://huggingface.co/datasets/ReDiX/DataForge).
Our datasets is a mixture of open source italian datasets and [ReDiX/everyday-conversations-ita](https://huggingface.co/datasets/ReDiX/everyday-conversations-ita)
It achieves the following results on the evaluation set:
- Loss: 0.8925
## Model description
This model is an experiment to test out the [ReDiX/everyday-conversations-ita](https://huggingface.co/datasets/ReDiX/everyday-conversations-ita) dataset.
## Intended uses & limitations
Simple and very basic chat in italian and english
## Training and evaluation data
| Model | m_mmlu_it | arc_it | hellaswag_it |
|:------:|:----------:|:-------:|:-------------:|
| Qwen2.5-0.5-Instruct | **37.05** | 27.54 | 35.73 |
| ReDiX/SmolLM2-360M-Instruct-ita | 24.94 | **28.40** | **35.96** |
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0003 | 1 | 1.3366 |
| 1.0595 | 0.2501 | 774 | 1.0840 |
| 1.0194 | 0.5002 | 1548 | 1.0139 |
| 1.0075 | 0.7504 | 2322 | 0.9701 |
| 1.0286 | 1.0005 | 3096 | 0.9269 |
| 0.7871 | 1.2506 | 3870 | 0.9111 |
| 0.7481 | 1.5007 | 4644 | 0.8960 |
| 0.7429 | 1.7508 | 5418 | 0.8925 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3 |