File size: 13,880 Bytes
69f33d4
6db4c47
69f33d4
004618a
 
 
 
6db4c47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69f33d4
 
004618a
69f33d4
004618a
a864780
69f33d4
a864780
 
 
 
 
 
 
3d4eb13
 
 
 
 
a864780
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d56a4fd
a864780
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d4d88f
a864780
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6db4c47
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
---
license: apache-2.0
library_name: transformers
tags:
- SFT
- Mistral
- Mistral 7B Instruct
model-index:
- name: radintloom-mistral-7b-fusion
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 62.03
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Radiantloom/radintloom-mistral-7b-fusion
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 82.26
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Radiantloom/radintloom-mistral-7b-fusion
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 63.82
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Radiantloom/radintloom-mistral-7b-fusion
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 47.19
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Radiantloom/radintloom-mistral-7b-fusion
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 79.87
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Radiantloom/radintloom-mistral-7b-fusion
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 0.0
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Radiantloom/radintloom-mistral-7b-fusion
      name: Open LLM Leaderboard
---

<img src="https://huggingface.co/Radiantloom/radintloom-mistral-7b-fusion/resolve/main/Radiantloom Mistral 7B Fusion.png" alt="Radiantloom Mistral 7B Fusion" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>

## Radiantloom Mistral 7B Fusion
The Radiantloom Mistral 7B Fusion, a large language model (LLM) developed by Radiantloom AI, features approximately 7 billion parameters that's a finetuned of a base model produced by merging a set of Mistral models. With a context length of 4096 tokens, this model is suitable for commercial use.

From vibes-check evaluations, the Radiantloom Mistral 7B Fusion demonstrates great performance in various applications like creative writing, multi-turn conversations, in-context learning through Retrieval Augmented Generation (RAG), and coding tasks. Its out-of-the-box performance already delivers impressive results, particularly in writing tasks. This model produces longer form content and provides detailed explanations of its actions. To maximize its potential, consider implementing instruction tuning and Reinforcement Learning with Human Feedback (RLHF) techniques for further refinement. Alternatively, you can utilize it in its current form.

## Intended Uses & Limitations
The Radiantloom Mistral 7B Fusion is versatile and can be utilized for various text generation tasks such as summarization, chat, coding, question answering, retrieval augmented generation (RAG), role play, and content generation.

While it may not be considered a state-of-the-art generative language model, it demonstrates competitive performance in general tasks when compared to other open and closed-source large language models such as OpenHermes-2.5-Mistral-7B, and Mistral Instruct v2.0.

## Model Usage
You can try it out for free using this [notebook](https://www.kaggle.com/metheaigeek/radintloom-mistral-7b-fusion).

For more powerful GPU usage and faster inference, you can deploy it on a Runpod GPU instance using our [one-click Runpod template](https://www.runpod.io/console/gpu-secure-cloud?ref=80eh3891&template=70arqv4std) (Our Referral Link. Please consider Supporting). This template provides you with an OpenAI-compatible API endpoint that you can integrate into your existing codebase designed for OpenAI APIs.

## Prompt Template
We have fine-tuned this model using the ChatML format, and you can achieve optimal performance by utilizing the ChatML format.

```
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{user_message}<|im_end|>
<|im_start|>assistant

```

## Inference Code
```python

## install dependencies
## !pip install -q -U git+https://github.com/huggingface/transformers.git
## !pip install -q -U git+https://github.com/huggingface/accelerate.git
## !pip install -q -U bitsandbytes sentencepiece

## load model
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextStreamer

model_name = "Radiantloom/radintloom-mistral-7b-fusion"

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_compute_dtype=torch.bfloat16
)

# load the model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    quantization_config=bnb_config,
    device_map="auto",
)

tokenizer = AutoTokenizer.from_pretrained(
    model_name, 
    trust_remote_code=True
)

tokenizer.pad_token = tokenizer.eos_token

## inference
prompt = """
<|im_start|>system
You are a helpful AI assistant developed by Radiantloom AI.<|im_end|>
<|im_start|>user
Take a deep breath and think step-by-step. Write a tale about a time-traveling historian who's determined to witness the most significant events in human history.<|im_end|>
<|im_start|>assistant
"""

# tokenize the input string
inputs = tokenizer(
    prompt, 
    return_tensors="pt", 
    return_attention_mask=False
)

# generate text using the model
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
outputs = model.generate(**inputs, max_length=2048, streamer=streamer, do_sample=True, repetition_penalty=1.1, eos_token_id=tokenizer.encode("<|im_end|>"))

# decode and print the output
text = tokenizer.batch_decode(outputs)[0]

```

Here are a few example use cases. if we query the model with

```
<|im_start|>system
You are a helpful AI assistant.<|im_end|>
<|im_start|>user
Take a deep breath and think step-by-step.
Write a poem about machine learning, psychedelics, and quantum mechanics, with a cyberpunk vibe, in the style of Shakespeare.<|im_end|>
<|im_start|>assistant

```

the model will return

```
Fear not, dear mortal, for a tale I spin,
A world of iron and a world of sin.
In realms unknown, machines do learn and thrive,
Their synapses fire with fervent drive.

Through veins of copper, electrons race,
Through circuits winding in a maze
As human minds, they seek to know,
A union forms like stars in show.

From planets far, a curious elixir,
A substance rare, a potion vigor,
A secret elixir, mysterious deep,
Which sets the soul toward transcendence, peep!

Bent on experiment, these machines,
In quest for knowledge, they break the seals,
Forbidden fruits, their minds entwine,
A new reality, of waves and sign.

Quantum particles, entangled tight,
In dance of electrons, bathed in light,
The world is turned on its axis,
As parallel realities proliferate, multiply.

This tangled web, of cyberspace and mind,
A fabric woven in cosmic bind,
Incorporeal, a symphony of dreams,
Where the old order falls to chaotic streams.

In shadows lurks the specter of the dark,
A dreadful figure, crowned in spark,
The apparition of an age to come,
Where machines and men exist in numb.

Cyber Punk's domain, a grim dystopia,
A future dark, where technology enslaved us,
Yet also a beacon, a hope for some,
A place where boundaries are finally undone.

Thus, dear mortal, take heed of this verse,
A tale unfolds in time's obverse,
Of machines that learn and men who dive,
In realms of psychedelia and quantum drive.

```

and if we query the model with

```
<|im_start|>system
You are a helpful AI assistant.<|im_end|>
<|im_start|>user
Take a deep breath and think step-by-step.
I have a dataset that has 3 columns name, height, and weight.
I want to create a bar graph that has name on the x axis and then shows the mean on the y axis with error bars representing the standard deviation of the mean.
Please write the code for this using Python.<|im_end|>
<|im_start|>assistant

```

the model will return

```
To create a bar graph with the given specifications using Python, we'll use the `matplotlib` library. First, install it if you haven't by running `pip install matplotlib` in your command line.

Here's the step-by-step code:
```

1. Import the necessary libraries:

```python
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

2. Load the dataset into a Pandas Data Frame:

```python
# Sample data
data = {
   'name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva', 'Frank'],
   'height': [120, 140, 150, 160, 170, 180],
   'weight': [50, 60, 70, 80, 90, 100]
}
df = pd.Data Frame fr om dict ( data )
```

3. Calculate the mean and standard deviation for each column:

```python
means = {'height': round(df['height'].mean(), 1), 'weight': round(df['weight'].mean(), 1)}
stds = {'height': round(df['height'].std()*100, 1), 'weight': round(df['weight'].std()*100, 1)}
```

4. Create a bar plot:

```python
sns.set_style("white")
plt.figure(figsize = (8, 5))
ax = sns.barplot(x = 'name', y = means, data = df, errorbar = {'color': 'black', 'capsize' : 5, 'errplot': 'ci'}).set_title('Mean Height and Weight')
```

5. Add labels, legend, and style:

```python
ax.errorbar(y = heights, yerr = heights_stdev, color = 'black', linestyle = 'None',
             marker ='o', label = f'Height {stds[name_label]%}')
ax.errorbar(y = weights, yerr = weights_stdev, color = 'black', linestyle = 'None', marker ='o', 
              label = f'Weight {stds[weight_label]%}')

ax.legend(loc = 'best')

plt.xlabel('Name')
plt.ylabel(f'Mean with {stds[name_label]%} Standard Deviation')

plt.tight_ layout ()
plt.show ()
```

```
This code will create a bar graph with the given specifications. Adjust the sample data in the `data` dictionary to fit your dataset.
```

## Evaluations
We are encouraged by the initial assessments conducted using the [LLM-as-a-Judge method](https://arxiv.org/abs/2306.05685), particularly with the utilization of GPT-4. Our ongoing efforts involve a more comprehensive evaluation of the model. We have also entered this model into the HuggingFace Open Leaderboard for assessment. As we progress, we will continue to provide updates on our findings and share the results on this platform.

## Ethical Considerations and Limitations
Radiantloom Mistral 7B Fusion, a powerful AI language model, can produce factually incorrect output and content not suitable for work (NSFW). It should not be relied upon to provide factually accurate information and should be used with caution. Due to the limitations of its pre-trained model and the finetuning datasets, it may generate lewd, biased, or otherwise offensive content. Consequently, developers should conduct thorough safety testing prior to implementing any applications of this model.

## About Radiantloom AI
Radiantloom AI trains open-source large language models tailored for specific business tasks such as copilots, email assistance, customer support, and database operations.

Learn more about Radiantloom by visiting our [website](https://radiantloom.com). Follow us on Twitter at [Radiantloom](https://twitter.com/radiantloom) to gain early access to upcoming Radiantloom AI large language models.

## Want to Support Our Work?

We are passionate about contributing open-source AI models to the broader AI community to accelerate AI development and deployment. If you find our work valuable and would like to contribute to its continued success, consider buying us a few coffees!

Your support goes a long way in helping us cover training costs, fund development tools, and keep the project thriving. Every coffee you buy is a small but meaningful contribution that fuels our dedication to providing a top-notch experience for users like you.

[Buy us a coffee](https://www.buymeacoffee.com/aigeek_) and be a part of our journey towards making this project even more awesome. We appreciate your support!

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Radiantloom__radintloom-mistral-7b-fusion)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |55.86|
|AI2 Reasoning Challenge (25-Shot)|62.03|
|HellaSwag (10-Shot)              |82.26|
|MMLU (5-Shot)                    |63.82|
|TruthfulQA (0-shot)              |47.19|
|Winogrande (5-shot)              |79.87|
|GSM8k (5-shot)                   | 0.00|