Feature | Description |
---|---|
Name | nl_ner |
Version | 0.0.0 |
spaCy | >=3.6.1,<3.7.0 |
Default Pipeline | tok2vec , ner |
Components | tok2vec , ner |
Vectors | 0 keys, 0 unique vectors (0 dimensions) |
Sources | n/a |
License | n/a |
Author | n/a |
Description
Voor meer info: https://github.com/RaThorat/my-chatbot-project
Prodigy (ner.manual) is gebruikt om te annoteren van entiteiten zoals: PERSOON, ORGANISATIE, PROJECT, BEDRAG, LOCATIE, TIJDSPERIODE, SUBSIDIE.
prodigy ner.manual ner_dataset nl_core_news_lg ./Data/combined_documents.txt --label PERSOON,ORG,PROJECT,BEDRAG,LOC,TIJD,SUB
prodigy train ./models --ner ner_dataset --lang nl --label-stats --verbose --eval-split 0.1
46 documenten (https://github.com/RaThorat/my-chatbot-project/tree/main/Data/txt) uit de DUS-i website gedownload, schoongemaakt, samengesteld in combined_documents.txt
Label Scheme
View label scheme (7 labels for 1 components)
Component | Labels |
---|---|
ner |
BEDRAG , LOC , ORG , PERSOON , PROJECT , SUB , TIJD |
Accuracy
Type | Score |
---|---|
ENTS_F |
44.44 |
ENTS_P |
50.00 |
ENTS_R |
40.00 |
TOK2VEC_LOSS |
6462.80 |
NER_LOSS |
14799.70 |
- Downloads last month
- 12
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Evaluation results
- NER Precisionself-reported0.500
- NER Recallself-reported0.400
- NER F Scoreself-reported0.444