RWKV EagleX 7B v2 Model
!Important!: This is not meant to be used with huggingface transformers library
Use the Hugging Face varient instead, found here (v5-EagleX-v2-7B-HF)The following is the raw representation of the EagleX 7B v2 model. For use with our own set of trainers
This is not an instruct tune model! (soon...)
Quickstart with the hugging face transformer library
See the huggingface version here (v5-EagleX-v2-7B-HF)
model = AutoModelForCausalLM.from_pretrained("RWKV/v5-Eagle-7B-HF", trust_remote_code=True).to(torch.float32)
tokenizer = AutoTokenizer.from_pretrained("RWKV/v5-Eagle-7B-HF", trust_remote_code=True)
Evaluation
The following shows the progression of the model from 1.1T trained to 2.25T trained.
Model | Eagle-7B-HF | EagleX-7B-HF-v1 | EagleX-7B-HF-v2 |
---|---|---|---|
Param Count | 7.52 B | 7.52 B | 7.52 B |
Tokens Trained | 1.1 T | 1.7 T | 2.25 T |
avg_acc | 0.4822 | 0.5391 | 0.5495 |
glue (acc) | 0.5752 | 0.7463 | 0.7439 |
anli (acc) | 0.3594 | 0.4847 | 0.5097 |
mnli (acc) | 0.3802 | 0.7928 | 0.7884 |
mnli_mismatch (acc) | 0.3687 | 0.7985 | 0.784 |
swag (acc) | 0.568 | 0.5814 | 0.5905 |
lambada_standard (acc) | 0.685 | 0.686 | 0.7004 |
lambada_openai (acc) | 0.7425 | 0.7522 | 0.7502 |
mmlu (acc) | 0.3321 | 0.4014 | 0.438 |
winogrande (acc) | 0.674 | 0.7206 | 0.7332 |
wnli (acc) | 0.4225 | 0.4648 | 0.493 |
truthfulqa (acc) | 0.3303 | 0.3268 | 0.3401 |
logiqa (acc) | 0.2458 | 0.2458 | 0.2458 |
logiqa2 (acc) | 0.2494 | 0.2595 | 0.2621 |
sciq (acc) | 0.955 | 0.96 | 0.93 |
piqa (acc) | 0.7704 | 0.7758 | 0.7764 |
arc_easy (acc) | 0.7382 | 0.7555 | 0.7445 |
arc_challenge (acc) | 0.3951 | 0.4087 | 0.4155 |
hellaswag (acc) | 0.5264 | 0.5411 | 0.56 |
openbookqa (acc) | 0.302 | 0.296 | 0.304 |
mathqa (acc) | 0.26 | 0.26 | 0.2593 |
arithmetic (acc) | 0.245 | 0.0634 | 0.1703 |
Compared against other top performing models in the same weight class.
Model | OLMo-7B | falcon-7b | Llama-2-7b-hf | EagleX-7B-HF-v2 | Mistral-7B-v0.1 |
---|---|---|---|---|---|
Param Count | 6.89 B | 6.92 B | 6.74 B | 7.52 B | 7.24 B |
Tokens Trained | 2.5 T | 1.5 T | 2 T | 2.25 T | 2 - 7 T? |
avg_acc | 0.4578 | 0.4775 | 0.5045 | 0.5495 | 0.5676 |
glue (acc) | 0.474 | 0.4578 | 0.4289 | 0.7439 | 0.515 |
anli (acc) | 0.3478 | 0.3541 | 0.3697 | 0.5097 | 0.3803 |
mnli (acc) | 0.3294 | 0.3893 | 0.4269 | 0.7884 | 0.4542 |
mnli_mismatch (acc) | 0.3348 | 0.404 | 0.4395 | 0.784 | 0.4632 |
swag (acc) | 0.5512 | 0.5685 | 0.5658 | 0.5905 | 0.5756 |
lambada_standard (acc) | 0.6396 | 0.6868 | 0.6808 | 0.7004 | 0.6944 |
lambada_openai (acc) | 0.6872 | 0.746 | 0.7353 | 0.7502 | 0.7553 |
mmlu (acc) | 0.2812 | 0.2512 | 0.4077 | 0.438 | 0.5964 |
winogrande (acc) | 0.6725 | 0.6709 | 0.6914 | 0.7332 | 0.7364 |
wnli (acc) | 0.5775 | 0.4789 | 0.4648 | 0.493 | 0.5775 |
truthfulqa (acc) | 0.3015 | 0.2826 | 0.3205 | 0.3401 | 0.3537 |
logiqa (acc) | 0.2335 | 0.2151 | 0.2535 | 0.2458 | 0.2427 |
logiqa2 (acc) | 0.2506 | 0.2252 | 0.2564 | 0.2621 | 0.3022 |
sciq (acc) | 0.927 | 0.944 | 0.939 | 0.93 | 0.959 |
piqa (acc) | 0.7878 | 0.7949 | 0.7807 | 0.7764 | 0.8052 |
arc_easy (acc) | 0.7353 | 0.7479 | 0.7643 | 0.7445 | 0.8081 |
arc_challenge (acc) | 0.3677 | 0.4027 | 0.4309 | 0.4155 | 0.5009 |
hellaswag (acc) | 0.5572 | 0.5772 | 0.5713 | 0.56 | 0.6131 |
openbookqa (acc) | 0.292 | 0.306 | 0.316 | 0.304 | 0.33 |
mathqa (acc) | 0.26 | 0.2884 | 0.2801 | 0.2593 | 0.3554 |
arithmetic (acc) | 0.0069 | 0.2367 | 0.4703 | 0.1703 | 0.9004 |
See the following, for the full details on this model: https://blog.rwkv.com/p/eaglex-v2-soaring-past-llama2-7b
Links
- Our wiki
- Full eval data
- Recursal.AI Cloud Platform
- HF Gradio Demo
- Blog article, detailing our model launch
Acknowledgement
We are grateful for the help and support from the following key groups:
- Recursal.ai team for financing the GPU resources, and managing the training of this foundation model - you can run the Eagle line of RWKV models on their cloud / on-premise platform today.
- EleutherAI for their support, especially in the v5/v6 Eagle/Finch paper
- Linux Foundation AI & Data group for supporting and hosting the RWKV project