Model Card for Model ID
Model Details
Model Description
- Developed by: [More Information Needed]
- Shared by [optional]: [More Information Needed]
- Model type: [More Information Needed]
- Language(s) (NLP): [More Information Needed]
- License: [More Information Needed]
- Finetuned from model [optional]: [More Information Needed]
Model Sources [optional]
- Repository: https://github.com/DengPingFan/BBS-Net
- Paper [optional]: BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network, 2020
- Demo [optional]: [More Information Needed]
Uses
Direct Use
from typing import Dict
import numpy as np
from datasets import load_dataset
from matplotlib import cm
from PIL import Image
from torch import Tensor
from transformers import AutoImageProcessor, AutoModel
model = AutoModel.from_pretrained("RGBD-SOD/bbsnet", trust_remote_code=True)
image_processor = AutoImageProcessor.from_pretrained(
"RGBD-SOD/bbsnet", trust_remote_code=True
)
dataset = load_dataset("RGBD-SOD/test", "v1", split="train", cache_dir="data")
index = 0
"""
Get a specific sample from the dataset
sample = {
'depth': <PIL.PngImagePlugin.PngImageFile image mode=L size=640x360>,
'rgb': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=640x360>,
'gt': <PIL.PngImagePlugin.PngImageFile image mode=L size=640x360>,
'name': 'COME_Train_5'
}
"""
sample = dataset[index]
depth: Image.Image = sample["depth"]
rgb: Image.Image = sample["rgb"]
gt: Image.Image = sample["gt"]
name: str = sample["name"]
"""
1. Preprocessing step
preprocessed_sample = {
'rgb': tensor([[[[-0.8507, ....0365]]]]),
'gt': tensor([[[[0., 0., 0...., 0.]]]]),
'depth': tensor([[[[0.9529, 0....3490]]]])
}
"""
preprocessed_sample: Dict[str, Tensor] = image_processor.preprocess(sample)
"""
2. Prediction step
output = {
'logits': tensor([[[[-5.1966, ...ackward0>)
}
"""
output: Dict[str, Tensor] = model(
preprocessed_sample["rgb"], preprocessed_sample["depth"]
)
"""
3. Postprocessing step
"""
postprocessed_sample: np.ndarray = image_processor.postprocess(
output["logits"], [sample["gt"].size[1], sample["gt"].size[0]]
)
prediction = Image.fromarray(np.uint8(cm.gist_earth(postprocessed_sample) * 255))
"""
Show the predicted salient map and the corresponding ground-truth(GT)
"""
prediction.show()
gt.show()
Downstream Use [optional]
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
Training Details
Training Data
[More Information Needed]
Training Procedure
Preprocessing [optional]
[More Information Needed]
Training Hyperparameters
- Training regime: [More Information Needed]
Speeds, Sizes, Times [optional]
[More Information Needed]
Evaluation
Testing Data, Factors & Metrics
Testing Data
[More Information Needed]
Factors
[More Information Needed]
Metrics
[More Information Needed]
Results
[More Information Needed]
Summary
Model Examination [optional]
[More Information Needed]
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: [More Information Needed]
- Hours used: [More Information Needed]
- Cloud Provider: [More Information Needed]
- Compute Region: [More Information Needed]
- Carbon Emitted: [More Information Needed]
Technical Specifications [optional]
Model Architecture and Objective
[More Information Needed]
Compute Infrastructure
[More Information Needed]
Hardware
[More Information Needed]
Software
[More Information Needed]
Citation [optional]
BibTeX:
@inproceedings{fan2020bbs,
title={BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network},
author={Fan, Deng-Ping and Zhai, Yingjie and Borji, Ali and Yang, Jufeng and Shao, Ling},
booktitle={Computer Vision--ECCV 2020: 16th European Conference, Glasgow, UK, August 23--28, 2020, Proceedings, Part XII},
pages={275--292},
year={2020},
organization={Springer}
}
APA:
[More Information Needed]
Glossary [optional]
[More Information Needed]
More Information [optional]
[More Information Needed]
Model Card Authors [optional]
[More Information Needed]
Model Card Contact
[More Information Needed]
- Downloads last month
- 21