基于ruozhiba对Llama-3-8B-Instruct进行微调。

模型:

数据集:

训练工具

https://github.com/hiyouga/LLaMA-Factory

测评方式:

使用opencompass(https://github.com/open-compass/OpenCompass/ ), 测试工具基于CEval和MMLU对微调之后的模型和原始模型进行测试。
测试模型分别为:

  • Llama-3-8B
  • Llama-3-8B-Instruct
  • LLama3-Instruct-sft-ruozhiba,使用ruozhiba数据对Llama-3-8B-Instruct使用sft方式lora微调

结果

模型名称 CEVAL MMLU
LLama3 49.91 66.62
LLama3-Instruct 50.55 67.15
LLama3-Instruct-sft-ruozhiba-3epoch 50.87 67.51

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • num_epochs: 3.0
  • mixed_precision_training: Native AMP
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Dataset used to train REILX/Llama-3-8B-Instruct-ruozhiba-lora

Collection including REILX/Llama-3-8B-Instruct-ruozhiba-lora