ECHR_test_Merged
This model is a fine-tuned version of nlpaueb/legal-bert-base-uncased on the lex_glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.2162
- Macro-f1: 0.5607
- Micro-f1: 0.6726
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Macro-f1 | Micro-f1 |
---|---|---|---|---|---|
0.2278 | 0.44 | 500 | 0.3196 | 0.2394 | 0.4569 |
0.1891 | 0.89 | 1000 | 0.2827 | 0.3255 | 0.5112 |
0.1803 | 1.33 | 1500 | 0.2603 | 0.3961 | 0.5698 |
0.1676 | 1.78 | 2000 | 0.2590 | 0.4251 | 0.6003 |
0.1635 | 2.22 | 2500 | 0.2489 | 0.4186 | 0.6030 |
0.1784 | 2.67 | 3000 | 0.2445 | 0.4627 | 0.6159 |
0.1556 | 3.11 | 3500 | 0.2398 | 0.4757 | 0.6170 |
0.151 | 3.56 | 4000 | 0.2489 | 0.4725 | 0.6163 |
0.1564 | 4.0 | 4500 | 0.2289 | 0.5019 | 0.6416 |
0.1544 | 4.44 | 5000 | 0.2406 | 0.5013 | 0.6408 |
0.1516 | 4.89 | 5500 | 0.2351 | 0.5145 | 0.6510 |
0.1487 | 5.33 | 6000 | 0.2354 | 0.5164 | 0.6394 |
0.1385 | 5.78 | 6500 | 0.2385 | 0.5205 | 0.6486 |
0.145 | 6.22 | 7000 | 0.2337 | 0.5197 | 0.6529 |
0.1332 | 6.67 | 7500 | 0.2294 | 0.5421 | 0.6526 |
0.1293 | 7.11 | 8000 | 0.2167 | 0.5576 | 0.6652 |
0.1475 | 7.56 | 8500 | 0.2218 | 0.5676 | 0.6649 |
0.1376 | 8.0 | 9000 | 0.2203 | 0.5565 | 0.6709 |
0.1408 | 8.44 | 9500 | 0.2178 | 0.5541 | 0.6716 |
0.133 | 8.89 | 10000 | 0.2212 | 0.5692 | 0.6640 |
0.1363 | 9.33 | 10500 | 0.2148 | 0.5642 | 0.6736 |
0.1344 | 9.78 | 11000 | 0.2162 | 0.5607 | 0.6726 |
Framework versions
- Transformers 4.19.4
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.