File size: 1,627 Bytes
1316775
d61c07e
 
5e9012f
1316775
 
5e9012f
 
 
1316775
 
 
 
 
 
5e9012f
 
 
 
 
1316775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d61c07e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46


---
base_model: byroneverson/gemma-2-27b-it-abliterated
language:
- en
library_name: transformers
license: gemma
pipeline_tag: text-generation
tags:
- gemma
- gemma-2
- chat
- it
- abliterated
- llama-cpp
- gguf-my-repo
- gguf
- quant
- quantized
---

[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)


# QuantFactory/gemma-2-27b-it-abliterated-GGUF
This is quantized version of [byroneverson/gemma-2-27b-it-abliterated](https://huggingface.co/byroneverson/gemma-2-27b-it-abliterated) created using llama.cpp

# Original Model Card




# gemma-2-27b-it-abliterated

## Now accepting abliteration requests. If you would like to see a model abliterated, follow me and leave me a message with model link.

This is a new approach for abliterating models using CPU only. I was able to abliterate this model using free kaggle processing with no accelerator.
1. Obtain refusal direction vector using a quant model with llama.cpp (llama-cpp-python and ggml-python).
2. Orthogonalize each .safetensors files directly from original repo and upload to a new repo. (one at a time)

Check out the <a href="https://huggingface.co/byroneverson/gemma-2-27b-it-abliterated/blob/main/abliterate-gemma-2-27b-it.ipynb">jupyter notebook</a> for details of how this model was abliterated from gemma-2-27b-it.

![Logo](https://huggingface.co/byroneverson/gemma-2-27b-it-abliterated/resolve/main/logo.png "Logo")