language:
- en
license: mit
library_name: transformers
tags:
- chat
- phi
- phi3
- phi3.5
- finetune
base_model: microsoft/Phi-3.5-mini-instruct
datasets:
- MaziyarPanahi/truthy-dpo-v0.1-axolotl
model_name: calme-2.1-phi3.5-4b
pipeline_tag: text-generation
inference: false
model_creator: MaziyarPanahi
quantized_by: MaziyarPanahi
model-index:
- name: calme-2.1-phi3.5-4b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 56.59
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-2.1-phi3.5-4b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 36.11
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-2.1-phi3.5-4b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 14.43
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-2.1-phi3.5-4b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 12.53
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-2.1-phi3.5-4b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 9.77
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-2.1-phi3.5-4b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 32.61
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-2.1-phi3.5-4b
name: Open LLM Leaderboard
QuantFactory/calme-2.1-phi3.5-4b-GGUF
This is quantized version of MaziyarPanahi/calme-2.1-phi3.5-4b created using llama.cpp
Original Model Card
MaziyarPanahi/calme-2.1-phi3.5-4b
This model is a fine-tuned version of the microsoft/Phi-3.5-mini-instruct
, pushing the boundaries of natural language understanding and generation even further. My goal was to create a versatile and robust model that excels across a wide range of benchmarks and real-world applications.
Use Cases
This model is suitable for a wide range of applications, including but not limited to:
- Advanced question-answering systems
- Intelligent chatbots and virtual assistants
- Content generation and summarization
- Code generation and analysis
- Complex problem-solving and decision support
β‘ Quantized GGUF
Here are the quants: calme-2.1-phi3.5-4b-GGUF
π Open LLM Leaderboard Evaluation Results
Coming soon!
Prompt Template
This model uses ChatML
prompt template:
<|system|>
You are a helpful assistant.<|end|>
<|user|>
How to explain Internet for a medieval knight?<|end|>
<|assistant|>
How to use
# Use a pipeline as a high-level helper
from transformers import pipeline
messages = [
{"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="MaziyarPanahi/calme-2.1-phi3.5-4b")
pipe(messages)
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("MaziyarPanahi/calme-2.1-phi3.5-4b")
model = AutoModelForCausalLM.from_pretrained("MaziyarPanahi/calme-2.1-phi3.5-4b")
Ethical Considerations
As with any large language model, users should be aware of potential biases and limitations. We recommend implementing appropriate safeguards and human oversight when deploying this model in production environments.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 27.01 |
IFEval (0-Shot) | 56.59 |
BBH (3-Shot) | 36.11 |
MATH Lvl 5 (4-Shot) | 14.43 |
GPQA (0-shot) | 12.53 |
MuSR (0-shot) | 9.77 |
MMLU-PRO (5-shot) | 32.61 |