aashish1904's picture
Upload README.md with huggingface_hub
f15f07a verified
metadata
license: apache-2.0
library_name: transformers
base_model:
  - Qwen/Qwen2.5-14B-Instruct
model-index:
  - name: Replete-LLM-V2.5-Qwen-14b
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 58.4
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Replete-AI/Replete-LLM-V2.5-Qwen-14b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 49.39
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Replete-AI/Replete-LLM-V2.5-Qwen-14b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 15.63
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Replete-AI/Replete-LLM-V2.5-Qwen-14b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 16.22
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Replete-AI/Replete-LLM-V2.5-Qwen-14b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 18.83
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Replete-AI/Replete-LLM-V2.5-Qwen-14b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 48.62
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Replete-AI/Replete-LLM-V2.5-Qwen-14b
          name: Open LLM Leaderboard

QuantFactory Banner

QuantFactory/Replete-LLM-V2.5-Qwen-14b-GGUF

This is quantized version of Replete-AI/Replete-LLM-V2.5-Qwen-14b created using llama.cpp

Original Model Card

Replete-LLM-V2.5-Qwen-14b

image/png

Replete-LLM-V2.5-Qwen-14b is a continues finetuned version of Qwen2.5-14B. I noticed recently that the Qwen team did not learn from my methods of continuous finetuning, the great benefits, and no downsides of it. So I took it upon myself to merge the instruct model with the base model myself using the Ties merge method

This version of the model shows higher performance than the original instruct and base models.

Quants:

GGUF: https://huggingface.co/bartowski/Replete-LLM-V2.5-Qwen-14b-GGUF

Benchmarks:

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 34.52
IFEval (0-Shot) 58.40
BBH (3-Shot) 49.39
MATH Lvl 5 (4-Shot) 15.63
GPQA (0-shot) 16.22
MuSR (0-shot) 18.83
MMLU-PRO (5-shot) 48.62