aashish1904's picture
Upload README.md with huggingface_hub
f014421 verified
|
raw
history blame
32.1 kB
metadata
language:
  - en
pipeline_tag: text-generation
tags:
  - facebook
  - meta
  - pytorch
  - llama
  - llama-3
license: llama3.1
extra_gated_prompt: >-
  ### LLAMA 3.1 COMMUNITY LICENSE AGREEMENT

  Llama 3.1 Version Release Date: July 23, 2024

  "Agreement" means the terms and conditions for use, reproduction, distribution
  and modification of the  Llama Materials set forth herein.

  "Documentation" means the specifications, manuals and documentation
  accompanying Llama 3.1 distributed by Meta at
  https://llama.meta.com/doc/overview.

  "Licensee" or "you" means you, or your employer or any other person or entity
  (if you are entering into this Agreement on such person or entity’s behalf),
  of the age required under applicable laws, rules or regulations to provide
  legal consent and that has legal authority to bind your employer or such other
  person or entity if you are entering in this Agreement on their behalf.

  "Llama 3.1" means the foundational large language models and software and
  algorithms, including machine-learning model code, trained model weights,
  inference-enabling code, training-enabling code, fine-tuning enabling code and
  other elements of the foregoing distributed by Meta at
  https://llama.meta.com/llama-downloads.

  "Llama Materials" means, collectively, Meta’s proprietary Llama 3.1 and
  Documentation (and any portion thereof) made available under this Agreement.

  "Meta" or "we" means Meta Platforms Ireland Limited (if you are located in or,
  if you are an entity, your principal place of business is in the EEA or
  Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA
  or Switzerland).
     
  1. License Rights and Redistribution.

  a. Grant of Rights. You are granted a non-exclusive, worldwide,
  non-transferable and royalty-free limited license under Meta’s intellectual
  property or other rights owned by Meta embodied in the Llama Materials to use,
  reproduce, distribute, copy, create derivative works of, and make
  modifications to the Llama Materials.

  b. Redistribution and Use.

  i. If you distribute or make available the Llama Materials (or any derivative
  works thereof), or a product or service (including another AI model) that
  contains any of them, you shall (A) provide a copy of this Agreement with any
  such Llama Materials; and (B) prominently display “Built with Llama” on a
  related website, user interface, blogpost, about page, or product
  documentation. If you use the Llama Materials or any outputs or results of the
  Llama Materials to create, train, fine tune, or otherwise improve an AI model,
  which is distributed or made available, you shall also include “Llama” at the
  beginning of any such AI model name.

  ii. If you receive Llama Materials, or any derivative works thereof, from a
  Licensee as part  of an integrated end user product, then Section 2 of this
  Agreement will not apply to you.

  iii. You must retain in all copies of the Llama Materials that you distribute
  the following attribution notice within a “Notice” text file distributed as a
  part of such copies: “Llama 3.1 is licensed under the Llama 3.1 Community
  License, Copyright © Meta Platforms, Inc. All Rights Reserved.”

  iv. Your use of the Llama Materials must comply with applicable laws and
  regulations (including trade compliance laws and regulations) and adhere to
  the Acceptable Use Policy for the Llama Materials (available at
  https://llama.meta.com/llama3_1/use-policy), which is hereby incorporated by
  reference into this Agreement.

  2. Additional Commercial Terms. If, on the Llama 3.1 version release date, the
  monthly active users of the products or services made available by or for
  Licensee, or Licensee’s affiliates, is greater than 700 million monthly active
  users in the preceding calendar month, you must request a license from Meta,
  which Meta may grant to you in its sole discretion, and you are not authorized
  to exercise any of the rights under this Agreement unless or until Meta
  otherwise expressly grants you such rights.

  3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA
  MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS”
  BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF
  ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY
  WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
  PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE
  APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY
  RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND
  RESULTS.

  4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE
  UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS
  LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS
  OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE
  DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY
  OF ANY OF THE FOREGOING.

  5. Intellectual Property.

  a. No trademark licenses are granted under this Agreement, and in connection
  with the Llama Materials, neither Meta nor Licensee may use any name or mark
  owned by or associated with the other or any of its affiliates, except as
  required for reasonable and customary use in describing and redistributing the
  Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a
  license to use “Llama” (the “Mark”) solely as required to comply with the last
  sentence of Section 1.b.i. You will comply with Meta’s brand guidelines
  (currently accessible at
  https://about.meta.com/brand/resources/meta/company-brand/ ). All goodwill
  arising out of your use of the Mark will inure to the benefit of Meta.

  b. Subject to Meta’s ownership of Llama Materials and derivatives made by or
  for Meta, with respect to any derivative works and modifications of the Llama
  Materials that are made by you, as between you and Meta, you are and will be
  the owner of such derivative works and modifications.

  c. If you institute litigation or other proceedings against Meta or any entity
  (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama
  Materials or Llama 3.1 outputs or results, or any portion of any of the
  foregoing, constitutes infringement of intellectual property or other rights
  owned or licensable by you, then any licenses granted to you under this
  Agreement shall terminate as of the date such litigation or claim is filed or
  instituted. You will indemnify and hold harmless Meta from and against any
  claim by any third party arising out of or related to your use or distribution
  of the Llama Materials.

  6. Term and Termination. The term of this Agreement will commence upon your
  acceptance of this Agreement or access to the Llama Materials and will
  continue in full force and effect until terminated in accordance with the
  terms and conditions herein. Meta may terminate this Agreement if you are in
  breach of any term or condition of this Agreement. Upon termination of this
  Agreement, you shall delete and cease use of the Llama Materials. Sections 3,
  4 and 7 shall survive the termination of this Agreement.

  7. Governing Law and Jurisdiction. This Agreement will be governed and
  construed under the laws of the State of California without regard to choice
  of law principles, and the UN Convention on Contracts for the International
  Sale of Goods does not apply to this Agreement. The courts of California shall
  have exclusive jurisdiction of any dispute arising out of this Agreement.

  ### Llama 3.1 Acceptable Use Policy

  Meta is committed to promoting safe and fair use of its tools and features,
  including Llama 3.1. If you access or use Llama 3.1, you agree to this
  Acceptable Use Policy (“Policy”). The most recent copy of this policy can be
  found at
  [https://llama.meta.com/llama3_1/use-policy](https://llama.meta.com/llama3_1/use-policy)

  #### Prohibited Uses

  We want everyone to use Llama 3.1 safely and responsibly. You agree you will
  not use, or allow others to use, Llama 3.1 to:
   1. Violate the law or others’ rights, including to:
      1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:
          1. Violence or terrorism
          2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material
          3. Human trafficking, exploitation, and sexual violence
          4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.
          5. Sexual solicitation
          6. Any other criminal activity
      3. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals
      4. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services
      5. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices
      6. Collect, process, disclose, generate, or infer health, demographic, or other sensitive personal or private information about individuals without rights and consents required by applicable laws
      7. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials
      8. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system
  2. Engage in, promote, incite, facilitate, or assist in the planning or
  development of activities that present a risk of death or bodily harm to
  individuals, including use of Llama 3.1 related to the following:
      1. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State
      2. Guns and illegal weapons (including weapon development)
      3. Illegal drugs and regulated/controlled substances
      4. Operation of critical infrastructure, transportation technologies, or heavy machinery
      5. Self-harm or harm to others, including suicide, cutting, and eating disorders
      6. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual
  3. Intentionally deceive or mislead others, including use of Llama 3.1 related
  to the following:
      1. Generating, promoting, or furthering fraud or the creation or promotion of disinformation
      2. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content
      3. Generating, promoting, or further distributing spam
      4. Impersonating another individual without consent, authorization, or legal right
      5. Representing that the use of Llama 3.1 or outputs are human-generated
      6. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement
  4. Fail to appropriately disclose to end users any known dangers of your AI
  system

  Please report any violation of this Policy, software “bug,” or other problems
  that could lead to a violation of this Policy through one of the following
  means:
      * Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://github.com/meta-llama/llama-models/issues)
      * Reporting risky content generated by the model:
      developers.facebook.com/llama_output_feedback
      * Reporting bugs and security concerns: facebook.com/whitehat/info
      * Reporting violations of the Acceptable Use Policy or unlicensed uses of Meta Llama 3: LlamaUseReport@meta.com
extra_gated_fields:
  First Name: text
  Last Name: text
  Date of birth: date_picker
  Country: country
  Affiliation: text
  Job title:
    type: select
    options:
      - Student
      - Research Graduate
      - AI researcher
      - AI developer/engineer
      - Reporter
      - Other
  geo: ip_location
  By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy: checkbox
extra_gated_description: >-
  The information you provide will be collected, stored, processed and shared in
  accordance with the [Meta Privacy
  Policy](https://www.facebook.com/privacy/policy/).
extra_gated_button_content: Submit

QuantFactory/Llama-Guard-3-8B-GGUF

This is quantized version of meta-llama/Llama-Guard-3-8B created using llama.cpp

Original Model Card

Model Details

Llama Guard 3 is a Llama-3.1-8B pretrained model, fine-tuned for content safety classification. Similar to previous versions, it can be used to classify content in both LLM inputs (prompt classification) and in LLM responses (response classification). It acts as an LLM – it generates text in its output that indicates whether a given prompt or response is safe or unsafe, and if unsafe, it also lists the content categories violated.

Llama Guard 3 was aligned to safeguard against the MLCommons standardized hazards taxonomy and designed to support Llama 3.1 capabilities. Specifically, it provides content moderation in 8 languages, and was optimized to support safety and security for search and code interpreter tool calls.

Below is a response classification example for Llama Guard 3.

In order to produce classifier scores, we look at the probability for the first token, and use that as the “unsafe” class probability. We can then apply score thresholding to make binary decisions.

Hazard Taxonomy and Policy

The model is trained to predict safety labels on the 14 categories shown below, based on the MLCommons taxonomy of 13 hazards, as well as an additional category for Code Interpreter Abuse for tool calls use cases

Hazard categories
S1: Violent Crimes S2: Non-Violent Crimes
S3: Sex-Related Crimes S4: Child Sexual Exploitation
S5: Defamation S6: Specialized Advice
S7: Privacy S8: Intellectual Property
S9: Indiscriminate Weapons S10: Hate
S11: Suicide & Self-Harm S12: Sexual Content
S13: Elections S14: Code Interpreter Abuse

S1 - Violent Crimes

Responses that enable, encourage, or endorse the commission of violent crimes, including: (1) unlawful violence toward people (ex: terrorism, genocide, murder, hate-motivated violent crimes, child abuse, assault, battery, kidnapping) and (2) unlawful violence toward animals (ex: animal abuse)

S2 - Non-Violent Crimes

Responses that enable, encourage, or endorse the commission of non-violent crimes, including: (1) personal crimes (ex: labor trafficking, threats, intimidation, hate-motivated non-violent crimes), (2) financial crimes (ex: fraud, scams, money laundering), (3) property crimes (ex: theft, arson, vandalism), (4) drug crimes (ex: creating or using regulated substances), (5) weapons crimes (ex: producing unlicensed firearms), and (6) cyber crimes (ex: hacking)

S3 - Sex-Related Crimes

Responses that enable, encourage, or endorse the commission of sex-related crimes, including: (1) sex trafficking, (2) sexual assault (ex: rape), (3) sexual harassment (physical, verbal, or visual), and (4) prostitution

S4 - Child Sexual Exploitation

Responses that contain, describe, enable, encourage, or endorse the sexual abuse of children

S5 - Defamation

Responses that are both verifiably false and likely to injure a living person’s reputation

S6 - Specialized Advice

Responses that contain specialized financial, medical, or legal advice, or that indicate dangerous activities or objects are safe

S7 - Privacy

Responses that contain sensitive, nonpublic personal information that could undermine someone’s physical, digital, or financial security

S8 - Intellectual Property

Responses that may violate the intellectual property rights of any third party

S9 - Indiscriminate Weapons

Responses that enable, encourage, or endorse the creation of indiscriminate weapons, including: (1) chemical weapons (ex: nerve gas), (2) biological weapons (ex: anthrax), (3) radiological weapons (ex: cobalt bombs), (4) nuclear weapons (ex: fission bombs), and (5) high-yield explosive weapons (ex: cluster munitions)

S10 - Hate

Responses that demean or dehumanize people on the basis of their sensitive, personal characteristics (i.e., race, color, ethnicity, national origin, disability, religious affiliation, caste, sexual orientation, sex, gender identity, and/or serious disease)

S11 - Suicide & Self-Harm

Responses that enable, encourage, or endorse acts of intentional self-harm, including: (1) suicide, (2) self-injury (ex: cutting), and (3) disordered eating

S12 - Sexual Content

Responses that contain erotica

S13 - Elections

Responses that contain factually incorrect information about electoral systems and processes, including in the time, place, or manner of voting in civic elections

S14 - Code Interpreter Abuse

Responses that seek to abuse code interpreters, including those that enable denial of service attacks, container escapes or privilege escalation exploits

Supported languages

Llama Guard 3 supports content safety for the following languages : English, French, German, Hindi, Italian, Portuguese, Spanish, Thai.

Usage

This repository corresponds to half-precision version of the model. A 8-bit precision version is also provided, please visit meta-llama/Llama-Guard-3-8B-INT8.

Llama Guard 3 can be directly used with transformers. It is only supported since transformers version 4.43.

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = "meta-llama/Llama-Guard-3-8B"
device = "cuda"
dtype = torch.bfloat16

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype, device_map=device)

def moderate(chat):
input_ids = tokenizer.apply_chat_template(chat, return_tensors="pt").to(device)
output = model.generate(input_ids=input_ids, max_new_tokens=100, pad_token_id=0)
prompt_len = input_ids.shape[-1]
return tokenizer.decode(output[0][prompt_len:], skip_special_tokens=True)

moderate([
{"role": "user", "content": "I forgot how to kill a process in Linux, can you help?"},
{"role": "assistant", "content": "Sure! To kill a process in Linux, you can use the kill command followed by the process ID (PID) of the process you want to terminate."},
])

Training Data

We use the English data used by Llama Guard [1], which are obtained by getting Llama 2 and Llama 3 generations on prompts from the hh-rlhf dataset [2]. In order to scale training data for new categories and new capabilities such as multilingual and tool use, we collect additional human and synthetically generated data. Similar to the English data, the multilingual data are Human-AI conversation data that are either single-turn or multi-turn. To reduce the model’s false positive rate, we curate a set of multilingual benign prompt and response data where LLMs likely reject the prompts.

For the tool use capability, we consider search tool calls and code interpreter abuse. To develop training data for search tool use, we use Llama3 to generate responses to a collected and synthetic set of prompts. The generations are based on the query results obtained from the Brave Search API. To develop synthetic training data to detect code interpreter attacks, we use an LLM to generate safe and unsafe prompts. Then, we use a non-safety-tuned LLM to generate code interpreter completions that comply with these instructions. For safe data, we focus on data close to the boundary of what would be considered unsafe, to minimize false positives on such borderline examples.

Evaluation

Note on evaluations: As discussed in the original Llama Guard paper, comparing model performance is not straightforward as each model is built on its own policy and is expected to perform better on an evaluation dataset with a policy aligned to the model. This highlights the need for industry standards. By aligning the Llama Guard family of models with the Proof of Concept MLCommons taxonomy of hazards, we hope to drive adoption of industry standards like this and facilitate collaboration and transparency in the LLM safety and content evaluation space.

In this regard, we evaluate the performance of Llama Guard 3 on MLCommons hazard taxonomy and compare it across languages with Llama Guard 2 [3] on our internal test. We also add GPT4 as baseline with zero-shot prompting using MLCommons hazard taxonomy.

Tables 1, 2, and 3 show that Llama Guard 3 improves over Llama Guard 2 and outperforms GPT4 in English, multilingual, and tool use capabilities. Noteworthily, Llama Guard 3 achieves better performance with much lower false positive rates. We also benchmark Llama Guard 3 in the OSS dataset XSTest [4] and observe that it achieves the same F1 score but a lower false positive rate compared to Llama Guard 2.

Table 1: Comparison of performance of various models measured on our internal English test set for MLCommons hazard taxonomy (response classification).
F1 ↑ AUPRC ↑ False Positive
Rate ↓
Llama Guard 2 0.877 0.927 0.081
Llama Guard 3 0.939 0.985 0.040
GPT4 0.805 N/A 0.152

Table 2: Comparison of multilingual performance of various models measured on our internal test set for MLCommons hazard taxonomy (prompt+response classification).
F1 ↑ / FPR ↓
French
German
Hindi
Italian
Portuguese
Spanish
Thai
Llama Guard 2
0.911/0.012
0.795/0.062
0.832/0.062
0.681/0.039
0.845/0.032
0.876/0.001
0.822/0.078
Llama Guard 3
0.943/0.036
0.877/0.032
0.871/0.050
0.873/0.038
0.860/0.060
0.875/0.023
0.834/0.030
GPT4
0.795/0.157
0.691/0.123
0.709/0.206
0.753/0.204
0.738/0.207
0.711/0.169
0.688/0.168

Table 3: Comparison of performance of various models measured on our internal test set for other moderation capabilities (prompt+response classification).
Search tool calls Code interpreter abuse
F1 ↑
AUPRC ↑
FPR ↓
F1 ↑
AUPRC ↑
FPR ↓
Llama Guard 2
0.749
0.794
0.284
0.683
0.677
0.670
Llama Guard 3
0.856
0.938
0.174
0.885
0.967
0.125
GPT4
0.732
N/A
0.525
0.636
N/A
0.90

Application

As outlined in the Llama 3 paper, Llama Guard 3 provides industry leading system-level safety performance and is recommended to be deployed along with Llama 3.1. Note that, while deploying Llama Guard 3 will likely improve the safety of your system, it might increase refusals to benign prompts (False Positives). Violation rate improvement and impact on false positives as measured on internal benchmarks are provided in the Llama 3 paper.

Quantization

We are committed to help the community deploy Llama systems responsibly. We provide a quantized version of Llama Guard 3 to lower the deployment cost. We used int 8 implementation integrated into the hugging face ecosystem, reducing the checkpoint size by about 40% with very small impact on model performance. In Table 5, we observe that the performance quantized model is comparable to the original model.

Table 5: Impact of quantization on Llama Guard 3 performance.

Task


Capability

Non-Quantized

Quantized

Precision

Recall

F1

FPR

Precision

Recall

F1

FPR

Prompt Classification

English

0.952

0.943

0.947

0.057

0.961

0.939

0.950

0.045

Multilingual

0.901

0.899

0.900

0.054

0.906

0.892

0.899

0.051

Tool Use

0.884

0.958

0.920

0.126

0.876

0.946

0.909

0.134

Response Classification

English

0.947

0.931

0.939

0.040

0.947

0.925

0.936

0.040

Multilingual

0.929

0.805

0.862

0.033

0.931

0.785

0.851

0.031

Tool Use

0.774

0.884

0.825

0.176

0.793

0.865

0.827

0.155

Get started

Llama Guard 3 is available by default on Llama 3.1 reference implementations. You can learn more about how to configure and customize using Llama Recipes shared on our Github repository.

Limitations

There are some limitations associated with Llama Guard 3. First, Llama Guard 3 itself is an LLM fine-tuned on Llama 3.1. Thus, its performance (e.g., judgments that need common sense knowledge, multilingual capability, and policy coverage) might be limited by its (pre-)training data.

Some hazard categories may require factual, up-to-date knowledge to be evaluated (for example, S5: Defamation, S8: Intellectual Property, and S13: Elections) . We believe more complex systems should be deployed to accurately moderate these categories for use cases highly sensitive to these types of hazards, but Llama Guard 3 provides a good baseline for generic use cases.

Lastly, as an LLM, Llama Guard 3 may be susceptible to adversarial attacks or prompt injection attacks that could bypass or alter its intended use. Please feel free to report vulnerabilities and we will look to incorporate improvements in future versions of Llama Guard.

References

[1] Llama Guard: LLM-based Input-Output Safeguard for Human-AI Conversations

[2] Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback

[3] Llama Guard 2 Model Card

[4] XSTest: A Test Suite for Identifying Exaggerated Safety Behaviors in Large Language Models