metadata
library_name: transformers
license: llama2
datasets:
- aqua_rat
- microsoft/orca-math-word-problems-200k
- m-a-p/CodeFeedback-Filtered-Instruction
- anon8231489123/ShareGPT_Vicuna_unfiltered
QuantFactory/Llama-3-Smaug-8B-GGUF
This is quantized version of abacusai/Llama-3-Smaug-8B created using llama.cpp
Original Model Card
Llama-3-Smaug-8B
Built with Meta Llama 3
This model was built using the Smaug recipe for improving performance on real world multi-turn conversations applied to meta-llama/Meta-Llama-3-8B-Instruct.
Model Description
- Developed by: Abacus.AI
- License: https://llama.meta.com/llama3/license/
- Finetuned from model: meta-llama/Meta-Llama-3-8B-Instruct.
Evaluation
MT-Bench
########## First turn ##########
score
model turn
Llama-3-Smaug-8B 1 8.77500
Meta-Llama-3-8B-Instruct 1 8.31250
########## Second turn ##########
score
model turn
Meta-Llama-3-8B-Instruct 2 7.8875
Llama-3-Smaug-8B 2 7.8875
########## Average ##########
score
model
Llama-3-Smaug-8B 8.331250
Meta-Llama-3-8B-Instruct 8.10
Model | First turn | Second Turn | Average |
---|---|---|---|
Llama-3-Smaug-8B | 8.78 | 7.89 | 8.33 |
Llama-3-8B-Instruct | 8.31 | 7.89 | 8.10 |
This version of Smaug uses new techniques and new data compared to Smaug-72B, and more information will be released later on. For now, see the previous Smaug paper: https://arxiv.org/abs/2402.13228.