File size: 3,205 Bytes
216849a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
---
base_model: "meta-llama/Meta-Llama-3-8B-Instruct"
library_name: transformers
tags:
- mergekit
- merge
- facebook
- meta
- pytorch
- llama
- llama-3
language:
- en
pipeline_tag: text-generation
license: other
license_name: llama3
license_link: LICENSE
inference: false
model_creator: MaziyarPanahi
model_name: Llama-3-13B-Instruct-v0.1
quantized_by: MaziyarPanahi
---
![](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)
# QuantFactory/Llama-3-13B-Instruct-v0.1-GGUF
This is quantized version of [MaziyarPanahi/Llama-3-13B-Instruct-v0.1](https://huggingface.co/MaziyarPanahi/Llama-3-13B-Instruct-v0.1) created using llama.cpp
# Original Model Card
<img src="./llama-3-merges.webp" alt="Goku 8x22B v0.1 Logo" width="500" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# Llama-3-13B-Instruct-v0.1
This model is a self-merge of `meta-llama/Meta-Llama-3-8B-Instruct` model.
# How to use
You can use this model by using `MaziyarPanahi/Llama-3-13B-Instruct-v0.1` as the model name in Hugging Face's
transformers library.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
from transformers import pipeline
import torch
model_id = "MaziyarPanahi/Llama-3-13B-Instruct-v0.1"
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
# attn_implementation="flash_attention_2"
)
tokenizer = AutoTokenizer.from_pretrained(
model_id,
trust_remote_code=True
)
streamer = TextStreamer(tokenizer)
pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
model_kwargs={"torch_dtype": torch.bfloat16},
streamer=streamer
)
# Then you can use the pipeline to generate text.
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = pipeline(
prompt,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.95,
)
print(outputs[0]["generated_text"][len(prompt):])
```
## Prompt template
```text
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are a helpful assistant.<|eot_id|><|start_header_id|>user<|end_header_id|>
what's 25-4*2+3<|eot_id|><|start_header_id|>assistant<|end_header_id|>
To evaluate this expression, we need to follow the order of operations (PEMDAS):
1. First, multiply 4 and 2: 4*2 = 8
2. Then, subtract 8 from 25: 25 - 8 = 17
3. Finally, add 3: 17 + 3 = 20
So, 25-4*2+3 = 20!<|eot_id|>
To evaluate this expression, we need to follow the order of operations (PEMDAS):
1. First, multiply 4 and 2: 4*2 = 8
2. Then, subtract 8 from 25: 25 - 8 = 17
3. Finally, add 3: 17 + 3 = 20
So, 25-4*2+3 = 20!
```
|