File size: 2,907 Bytes
173c834 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
library_name: transformers
license: llama3.1
base_model: NousResearch/Hermes-3-Llama-3.1-8B
tags:
- llama-factory
- full
- unsloth
- generated_from_trainer
model-index:
- name: kimhyeongjun/Hermes-3-Llama-3.1-8B-Kor-Finance-Advisor
results: []
---
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
# QuantFactory/Hermes-3-Llama-3.1-8B-Kor-Finance-Advisor-GGUF
This is quantized version of [kimhyeongjun/Hermes-3-Llama-3.1-8B-Kor-Finance-Advisor](https://huggingface.co/kimhyeongjun/Hermes-3-Llama-3.1-8B-Kor-Finance-Advisor) created using llama.cpp
# Original Model Card
# kimhyeongjun/Hermes-3-Llama-3.1-8B-Kor-Finance-Advisor
This is my personal toy project for Chuseok(Korean Thanksgiving Day).
This model is a fine-tuned version of [NousResearch/Hermes-3-Llama-3.1-8B](https://huggingface.co/NousResearch/Hermes-3-Llama-3.1-8B) on the Korean_synthetic_financial_dataset_21K.
## Model description
Everything happened automatically without any user intervention.
Based on finance PDF data collected directly from the web, we refined the raw data using the 'meta-llama/Meta-Llama-3.1-70B-Instruct-FP8' model.
After generating synthetic data based on the cleaned data, we further evaluated the quality of the generated data using the 'meta-llama/Llama-Guard-3-8B' and 'RLHFlow/ArmoRM-Llama3-8B-v0.1' models.
We then used 'Alibaba-NLP/gte-large-en-v1.5' to extract embeddings and applied Faiss to perform Jaccard distance-based nearest neighbor analysis to construct the final dataset of 21k, which is diverse and sophisticated.
λͺ¨λ κ³Όμ μ μ¬μ©μμ κ°μ
μμ΄ μλμΌλ‘ μ§νλμμ΅λλ€.
μΉμμ μ§μ μμ§ν κΈμ΅ κ΄λ ¨ PDF λ°μ΄ν°λ₯Ό κΈ°λ°μΌλ‘, λμ΄ μμ΄μ 'meta-llama/Meta-Llama-3.1-70B-Instruct-FP8' λͺ¨λΈμ νμ©νμ¬ Raw λ°μ΄ν°λ₯Ό μ μ νμμ΅λλ€.
μ μ λ λ°μ΄ν°λ₯Ό λ°νμΌλ‘ ν©μ± λ°μ΄ν°λ₯Ό μμ±ν ν, 'meta-llama/Llama-Guard-3-8B' λ° 'RLHFlow/ArmoRM-Llama3-8B-v0.1' λͺ¨λΈμ ν΅ν΄ μμ±λ λ°μ΄ν°μ νμ§μ μ¬μΈ΅μ μΌλ‘ νκ°νμμ΅λλ€.
μ΄μ΄μ 'Alibaba-NLP/gte-large-en-v1.5'λ₯Ό μ¬μ©νμ¬ μλ² λ©μ μΆμΆνκ³ , Faissλ₯Ό μ μ©νμ¬ μμΉ΄λ 거리 κΈ°λ°μ κ·Όμ μ΄μ λΆμμ μνν¨μΌλ‘μ¨ λ€μνκ³ μ κ΅ν μ΅μ’
λ°μ΄ν°μ
21kμ μ§μ ꡬμ±νμμ΅λλ€.
## Task duration
3days (20240914~20240916)
## evaluation
Nothing (I had to take the Thanksgiving holiday off.)
## sample
![image/png](https://cdn-uploads.huggingface.co/production/uploads/619d8e31c21bf5feb310bd82/gJ6hnvAV2Qx9774AFFwQe.png)
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|