aashish1904
commited on
Commit
β’
173c834
1
Parent(s):
27b1832
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
|
4 |
+
library_name: transformers
|
5 |
+
license: llama3.1
|
6 |
+
base_model: NousResearch/Hermes-3-Llama-3.1-8B
|
7 |
+
tags:
|
8 |
+
- llama-factory
|
9 |
+
- full
|
10 |
+
- unsloth
|
11 |
+
- generated_from_trainer
|
12 |
+
model-index:
|
13 |
+
- name: kimhyeongjun/Hermes-3-Llama-3.1-8B-Kor-Finance-Advisor
|
14 |
+
results: []
|
15 |
+
|
16 |
+
---
|
17 |
+
|
18 |
+
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
|
19 |
+
|
20 |
+
|
21 |
+
# QuantFactory/Hermes-3-Llama-3.1-8B-Kor-Finance-Advisor-GGUF
|
22 |
+
This is quantized version of [kimhyeongjun/Hermes-3-Llama-3.1-8B-Kor-Finance-Advisor](https://huggingface.co/kimhyeongjun/Hermes-3-Llama-3.1-8B-Kor-Finance-Advisor) created using llama.cpp
|
23 |
+
|
24 |
+
# Original Model Card
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
# kimhyeongjun/Hermes-3-Llama-3.1-8B-Kor-Finance-Advisor
|
29 |
+
|
30 |
+
This is my personal toy project for Chuseok(Korean Thanksgiving Day).
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [NousResearch/Hermes-3-Llama-3.1-8B](https://huggingface.co/NousResearch/Hermes-3-Llama-3.1-8B) on the Korean_synthetic_financial_dataset_21K.
|
33 |
+
|
34 |
+
|
35 |
+
## Model description
|
36 |
+
|
37 |
+
Everything happened automatically without any user intervention.
|
38 |
+
|
39 |
+
Based on finance PDF data collected directly from the web, we refined the raw data using the 'meta-llama/Meta-Llama-3.1-70B-Instruct-FP8' model.
|
40 |
+
After generating synthetic data based on the cleaned data, we further evaluated the quality of the generated data using the 'meta-llama/Llama-Guard-3-8B' and 'RLHFlow/ArmoRM-Llama3-8B-v0.1' models.
|
41 |
+
We then used 'Alibaba-NLP/gte-large-en-v1.5' to extract embeddings and applied Faiss to perform Jaccard distance-based nearest neighbor analysis to construct the final dataset of 21k, which is diverse and sophisticated.
|
42 |
+
|
43 |
+
λͺ¨λ κ³Όμ μ μ¬μ©μμ κ°μ
μμ΄ μλμΌλ‘ μ§νλμμ΅λλ€.
|
44 |
+
|
45 |
+
μΉμμ μ§μ μμ§ν κΈμ΅ κ΄λ ¨ PDF λ°μ΄ν°λ₯Ό κΈ°λ°μΌλ‘, λμ΄ μμ΄μ 'meta-llama/Meta-Llama-3.1-70B-Instruct-FP8' λͺ¨λΈμ νμ©νμ¬ Raw λ°μ΄ν°λ₯Ό μ μ νμμ΅λλ€.
|
46 |
+
μ μ λ λ°μ΄ν°λ₯Ό λ°νμΌλ‘ ν©μ± λ°μ΄ν°λ₯Ό μμ±ν ν, 'meta-llama/Llama-Guard-3-8B' λ° 'RLHFlow/ArmoRM-Llama3-8B-v0.1' λͺ¨λΈμ ν΅ν΄ μμ±λ λ°μ΄ν°μ νμ§μ μ¬μΈ΅μ μΌλ‘ νκ°νμμ΅λλ€.
|
47 |
+
μ΄μ΄μ 'Alibaba-NLP/gte-large-en-v1.5'λ₯Ό μ¬μ©νμ¬ μλ² λ©μ μΆμΆνκ³ , Faissλ₯Ό μ μ©νμ¬ μμΉ΄λ 거리 κΈ°λ°μ κ·Όμ μ΄μ λΆμμ μνν¨μΌλ‘μ¨ λ€μνκ³ μ κ΅ν μ΅μ’
λ°μ΄ν°μ
21kμ μ§μ ꡬμ±νμμ΅λλ€.
|
48 |
+
|
49 |
+
|
50 |
+
## Task duration
|
51 |
+
3days (20240914~20240916)
|
52 |
+
|
53 |
+
## evaluation
|
54 |
+
Nothing (I had to take the Thanksgiving holiday off.)
|
55 |
+
|
56 |
+
## sample
|
57 |
+
|
58 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/619d8e31c21bf5feb310bd82/gJ6hnvAV2Qx9774AFFwQe.png)
|
59 |
+
|
60 |
+
### Framework versions
|
61 |
+
|
62 |
+
- Transformers 4.44.2
|
63 |
+
- Pytorch 2.4.0+cu121
|
64 |
+
- Datasets 2.21.0
|
65 |
+
- Tokenizers 0.19.1
|
66 |
+
|
67 |
+
|
68 |
+
|