Upload folder using huggingface_hub (#2)
Browse files- 3b5ec32696f8ddb2762c8689c217300e6765d9d28f751531f81c7dfac63e9627 (13aae6cf7ec29213288ab4f29a44a1b2c0905f19)
- cf3181cc2b95b4d963a285e36fbd0298a67dd8c33411e494ae52ff8c279a8780 (34719dab9b773eca213983bf141c68cdcb31e6ba)
- README.md +2 -2
- config.json +72 -71
- configuration_phi3.py +227 -213
- generation_config.json +1 -1
- model.safetensors +1 -1
- modeling_phi3.py +0 -0
- smash_config.json +1 -1
- tokenizer.json +13 -41
- tokenizer_config.json +15 -14
README.md
CHANGED
@@ -31,7 +31,7 @@ tags:
|
|
31 |
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
|
32 |
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
|
33 |
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
|
34 |
-
- Join Pruna AI community on Discord [here](https://discord.gg/
|
35 |
|
36 |
## Results
|
37 |
|
@@ -40,7 +40,7 @@ tags:
|
|
40 |
**Frequently Asked Questions**
|
41 |
- ***How does the compression work?*** The model is compressed with llm-int8.
|
42 |
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
|
43 |
-
- ***How is the model efficiency evaluated?*** These results were obtained on
|
44 |
- ***What is the model format?*** We use safetensors.
|
45 |
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
|
46 |
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
|
|
|
31 |
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
|
32 |
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
|
33 |
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
|
34 |
+
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
|
35 |
|
36 |
## Results
|
37 |
|
|
|
40 |
**Frequently Asked Questions**
|
41 |
- ***How does the compression work?*** The model is compressed with llm-int8.
|
42 |
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
|
43 |
+
- ***How is the model efficiency evaluated?*** These results were obtained on HARDWARE_NAME with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
|
44 |
- ***What is the model format?*** We use safetensors.
|
45 |
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
|
46 |
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
|
config.json
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "/
|
3 |
"architectures": [
|
4 |
"Phi3ForCausalLM"
|
5 |
],
|
|
|
6 |
"attention_dropout": 0.0,
|
7 |
"auto_map": {
|
8 |
"AutoConfig": "configuration_phi3.Phi3Config",
|
@@ -43,71 +44,64 @@
|
|
43 |
"rms_norm_eps": 1e-05,
|
44 |
"rope_scaling": {
|
45 |
"long_factor": [
|
46 |
-
1.
|
47 |
-
1.
|
48 |
-
1.
|
49 |
-
1.
|
50 |
-
1.
|
51 |
-
1.
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
63.
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
64.
|
90 |
-
64.
|
91 |
-
64.
|
92 |
-
64.
|
93 |
-
64.
|
94 |
],
|
95 |
"short_factor": [
|
96 |
-
1.05,
|
97 |
-
1.05,
|
98 |
-
1.05,
|
99 |
1.1,
|
100 |
1.1,
|
101 |
-
1.
|
102 |
-
1.2000000000000002,
|
103 |
-
1.2500000000000002,
|
104 |
1.3000000000000003,
|
105 |
1.3500000000000003,
|
106 |
-
1.
|
107 |
-
|
108 |
-
|
109 |
-
2.000000000000001,
|
110 |
-
2.000000000000001,
|
111 |
2.000000000000001,
|
112 |
2.000000000000001,
|
113 |
2.000000000000001,
|
@@ -128,27 +122,34 @@
|
|
128 |
2.0500000000000007,
|
129 |
2.0500000000000007,
|
130 |
2.0500000000000007,
|
|
|
|
|
|
|
131 |
2.1000000000000005,
|
132 |
2.1000000000000005,
|
133 |
-
2.1000000000000005,
|
134 |
-
2.1500000000000004,
|
135 |
2.1500000000000004,
|
136 |
-
2.
|
137 |
-
2.
|
138 |
-
2.
|
139 |
-
2.
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
2.7499999999999982,
|
141 |
-
2.
|
142 |
-
2.
|
143 |
-
|
144 |
],
|
145 |
-
"type": "
|
146 |
},
|
147 |
"rope_theta": 10000.0,
|
148 |
"sliding_window": 262144,
|
149 |
"tie_word_embeddings": false,
|
150 |
"torch_dtype": "float16",
|
151 |
-
"transformers_version": "4.
|
152 |
"use_cache": true,
|
153 |
"vocab_size": 32064
|
154 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "/ceph/hdd/staff/charpent/.cache/modelsi0oo5km_plq2xye6",
|
3 |
"architectures": [
|
4 |
"Phi3ForCausalLM"
|
5 |
],
|
6 |
+
"attention_bias": false,
|
7 |
"attention_dropout": 0.0,
|
8 |
"auto_map": {
|
9 |
"AutoConfig": "configuration_phi3.Phi3Config",
|
|
|
44 |
"rms_norm_eps": 1e-05,
|
45 |
"rope_scaling": {
|
46 |
"long_factor": [
|
47 |
+
1.0700000524520874,
|
48 |
+
1.1200000047683716,
|
49 |
+
1.149999976158142,
|
50 |
+
1.4199999570846558,
|
51 |
+
1.5699999332427979,
|
52 |
+
1.7999999523162842,
|
53 |
+
2.129999876022339,
|
54 |
+
2.129999876022339,
|
55 |
+
3.009999990463257,
|
56 |
+
5.910000324249268,
|
57 |
+
6.950000286102295,
|
58 |
+
9.070000648498535,
|
59 |
+
9.930000305175781,
|
60 |
+
10.710000038146973,
|
61 |
+
11.130000114440918,
|
62 |
+
14.609999656677246,
|
63 |
+
15.409998893737793,
|
64 |
+
19.809999465942383,
|
65 |
+
37.279998779296875,
|
66 |
+
38.279998779296875,
|
67 |
+
38.599998474121094,
|
68 |
+
40.12000274658203,
|
69 |
+
46.20000457763672,
|
70 |
+
50.940006256103516,
|
71 |
+
53.66000747680664,
|
72 |
+
54.9373893737793,
|
73 |
+
56.89738845825195,
|
74 |
+
57.28738784790039,
|
75 |
+
59.98738479614258,
|
76 |
+
60.86738586425781,
|
77 |
+
60.887386322021484,
|
78 |
+
61.71739196777344,
|
79 |
+
62.91739273071289,
|
80 |
+
62.957393646240234,
|
81 |
+
63.41739273071289,
|
82 |
+
63.8173942565918,
|
83 |
+
63.83739471435547,
|
84 |
+
63.897396087646484,
|
85 |
+
63.93739700317383,
|
86 |
+
64.06739807128906,
|
87 |
+
64.11434936523438,
|
88 |
+
64.12435150146484,
|
89 |
+
64.15435028076172,
|
90 |
+
64.19435119628906,
|
91 |
+
64.24435424804688,
|
92 |
+
64.57435607910156,
|
93 |
+
64.69000244140625,
|
94 |
+
64.76000213623047
|
95 |
],
|
96 |
"short_factor": [
|
|
|
|
|
|
|
97 |
1.1,
|
98 |
1.1,
|
99 |
+
1.1,
|
|
|
|
|
100 |
1.3000000000000003,
|
101 |
1.3500000000000003,
|
102 |
+
1.3500000000000003,
|
103 |
+
1.4000000000000004,
|
104 |
+
1.5500000000000005,
|
|
|
|
|
105 |
2.000000000000001,
|
106 |
2.000000000000001,
|
107 |
2.000000000000001,
|
|
|
122 |
2.0500000000000007,
|
123 |
2.0500000000000007,
|
124 |
2.0500000000000007,
|
125 |
+
2.0500000000000007,
|
126 |
+
2.0500000000000007,
|
127 |
+
2.0500000000000007,
|
128 |
2.1000000000000005,
|
129 |
2.1000000000000005,
|
|
|
|
|
130 |
2.1500000000000004,
|
131 |
+
2.25,
|
132 |
+
2.25,
|
133 |
+
2.25,
|
134 |
+
2.25,
|
135 |
+
2.25,
|
136 |
+
2.3999999999999995,
|
137 |
+
2.4499999999999993,
|
138 |
+
2.499999999999999,
|
139 |
+
2.6999999999999984,
|
140 |
+
2.6999999999999984,
|
141 |
2.7499999999999982,
|
142 |
+
2.799999999999998,
|
143 |
+
2.8999999999999977,
|
144 |
+
3.049999999999997
|
145 |
],
|
146 |
+
"type": "longrope"
|
147 |
},
|
148 |
"rope_theta": 10000.0,
|
149 |
"sliding_window": 262144,
|
150 |
"tie_word_embeddings": false,
|
151 |
"torch_dtype": "float16",
|
152 |
+
"transformers_version": "4.42.4",
|
153 |
"use_cache": true,
|
154 |
"vocab_size": 32064
|
155 |
}
|
configuration_phi3.py
CHANGED
@@ -1,213 +1,227 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
""" Phi-3 model configuration"""
|
17 |
-
|
18 |
-
|
19 |
-
from transformers.configuration_utils import PretrainedConfig
|
20 |
-
from transformers.utils import logging
|
21 |
-
|
22 |
-
|
23 |
-
logger = logging.get_logger(__name__)
|
24 |
-
|
25 |
-
PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
26 |
-
"microsoft/Phi-3-mini-4k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json",
|
27 |
-
"microsoft/Phi-3-mini-128k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json",
|
28 |
-
}
|
29 |
-
|
30 |
-
|
31 |
-
class Phi3Config(PretrainedConfig):
|
32 |
-
r"""
|
33 |
-
This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
|
34 |
-
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
35 |
-
defaults will yield a similar configuration to that of the
|
36 |
-
[microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
|
37 |
-
|
38 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
39 |
-
documentation from [`PretrainedConfig`] for more information.
|
40 |
-
|
41 |
-
Args:
|
42 |
-
vocab_size (`int`, *optional*, defaults to 32064):
|
43 |
-
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
|
44 |
-
`inputs_ids` passed when calling [`Phi3Model`].
|
45 |
-
hidden_size (`int`, *optional*, defaults to 3072):
|
46 |
-
Dimension of the hidden representations.
|
47 |
-
intermediate_size (`int`, *optional*, defaults to 8192):
|
48 |
-
Dimension of the MLP representations.
|
49 |
-
num_hidden_layers (`int`, *optional*, defaults to 32):
|
50 |
-
Number of hidden layers in the Transformer decoder.
|
51 |
-
num_attention_heads (`int`, *optional*, defaults to 32):
|
52 |
-
Number of attention heads for each attention layer in the Transformer decoder.
|
53 |
-
num_key_value_heads (`int`, *optional*):
|
54 |
-
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
55 |
-
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
56 |
-
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
57 |
-
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
58 |
-
by meanpooling all the original heads within that group. For more details checkout [this
|
59 |
-
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
60 |
-
`num_attention_heads`.
|
61 |
-
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
62 |
-
Dropout probability for mlp outputs.
|
63 |
-
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
64 |
-
The dropout ratio for the embeddings.
|
65 |
-
attention_dropout (`float`, *optional*, defaults to 0.0):
|
66 |
-
The dropout ratio after computing the attention scores.
|
67 |
-
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
68 |
-
The non-linear activation function (function or string) in the decoder.
|
69 |
-
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
70 |
-
The maximum sequence length that this model might ever be used with.
|
71 |
-
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
|
72 |
-
The maximum sequence length that this model was trained with. This is used to determine the size of the
|
73 |
-
original RoPE embeddings when using long scaling.
|
74 |
-
initializer_range (`float`, *optional*, defaults to 0.02):
|
75 |
-
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
76 |
-
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
77 |
-
The epsilon value used for the RMSNorm.
|
78 |
-
use_cache (`bool`, *optional*, defaults to `True`):
|
79 |
-
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
80 |
-
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
81 |
-
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
82 |
-
Whether to tie weight embeddings
|
83 |
-
rope_theta (`float`, *optional*, defaults to 10000.0):
|
84 |
-
The base period of the RoPE embeddings.
|
85 |
-
rope_scaling (`dict`, *optional*):
|
86 |
-
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
|
87 |
-
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be
|
88 |
-
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
|
89 |
-
divided by the number of attention heads divided by 2.
|
90 |
-
bos_token_id (`int`, *optional*, defaults to 1):
|
91 |
-
The id of the "beginning-of-sequence" token.
|
92 |
-
eos_token_id (`int`, *optional*, defaults to 32000):
|
93 |
-
The id of the "end-of-sequence" token.
|
94 |
-
pad_token_id (`int`, *optional*, defaults to 32000):
|
95 |
-
The id of the padding token.
|
96 |
-
sliding_window (`int`, *optional*):
|
97 |
-
Sliding window attention window size. If `None`, no sliding window is applied.
|
98 |
-
|
99 |
-
Example:
|
100 |
-
|
101 |
-
```python
|
102 |
-
>>> from transformers import Phi3Model, Phi3Config
|
103 |
-
|
104 |
-
>>> # Initializing a Phi-3 style configuration
|
105 |
-
>>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
|
106 |
-
|
107 |
-
>>> # Initializing a model from the configuration
|
108 |
-
>>> model = Phi3Model(configuration)
|
109 |
-
|
110 |
-
>>> # Accessing the model configuration
|
111 |
-
>>> configuration = model.config
|
112 |
-
```"""
|
113 |
-
|
114 |
-
model_type = "phi3"
|
115 |
-
keys_to_ignore_at_inference = ["past_key_values"]
|
116 |
-
|
117 |
-
def __init__(
|
118 |
-
self,
|
119 |
-
vocab_size=32064,
|
120 |
-
hidden_size=3072,
|
121 |
-
intermediate_size=8192,
|
122 |
-
num_hidden_layers=32,
|
123 |
-
num_attention_heads=32,
|
124 |
-
num_key_value_heads=None,
|
125 |
-
resid_pdrop=0.0,
|
126 |
-
embd_pdrop=0.0,
|
127 |
-
attention_dropout=0.0,
|
128 |
-
hidden_act="silu",
|
129 |
-
max_position_embeddings=4096,
|
130 |
-
original_max_position_embeddings=4096,
|
131 |
-
initializer_range=0.02,
|
132 |
-
rms_norm_eps=1e-5,
|
133 |
-
use_cache=True,
|
134 |
-
tie_word_embeddings=False,
|
135 |
-
rope_theta=10000.0,
|
136 |
-
rope_scaling=None,
|
137 |
-
bos_token_id=1,
|
138 |
-
eos_token_id=32000,
|
139 |
-
pad_token_id=32000,
|
140 |
-
sliding_window=None,
|
141 |
-
**kwargs,
|
142 |
-
):
|
143 |
-
self.vocab_size = vocab_size
|
144 |
-
self.hidden_size = hidden_size
|
145 |
-
self.intermediate_size = intermediate_size
|
146 |
-
self.num_hidden_layers = num_hidden_layers
|
147 |
-
self.num_attention_heads = num_attention_heads
|
148 |
-
|
149 |
-
if num_key_value_heads is None:
|
150 |
-
num_key_value_heads = num_attention_heads
|
151 |
-
|
152 |
-
self.num_key_value_heads = num_key_value_heads
|
153 |
-
self.resid_pdrop = resid_pdrop
|
154 |
-
self.embd_pdrop = embd_pdrop
|
155 |
-
self.attention_dropout = attention_dropout
|
156 |
-
self.hidden_act = hidden_act
|
157 |
-
self.max_position_embeddings = max_position_embeddings
|
158 |
-
self.original_max_position_embeddings = original_max_position_embeddings
|
159 |
-
self.initializer_range = initializer_range
|
160 |
-
self.rms_norm_eps = rms_norm_eps
|
161 |
-
self.use_cache = use_cache
|
162 |
-
self.rope_theta = rope_theta
|
163 |
-
self.rope_scaling = rope_scaling
|
164 |
-
self.
|
165 |
-
self.
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
""" Phi-3 model configuration"""
|
17 |
+
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
from transformers.utils import logging
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
26 |
+
"microsoft/Phi-3-mini-4k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json",
|
27 |
+
"microsoft/Phi-3-mini-128k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json",
|
28 |
+
}
|
29 |
+
|
30 |
+
|
31 |
+
class Phi3Config(PretrainedConfig):
|
32 |
+
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
|
34 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
35 |
+
defaults will yield a similar configuration to that of the
|
36 |
+
[microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
|
37 |
+
|
38 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
39 |
+
documentation from [`PretrainedConfig`] for more information.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 32064):
|
43 |
+
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
|
44 |
+
`inputs_ids` passed when calling [`Phi3Model`].
|
45 |
+
hidden_size (`int`, *optional*, defaults to 3072):
|
46 |
+
Dimension of the hidden representations.
|
47 |
+
intermediate_size (`int`, *optional*, defaults to 8192):
|
48 |
+
Dimension of the MLP representations.
|
49 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
50 |
+
Number of hidden layers in the Transformer decoder.
|
51 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
52 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
53 |
+
num_key_value_heads (`int`, *optional*):
|
54 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
55 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
56 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
57 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
58 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
59 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
60 |
+
`num_attention_heads`.
|
61 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
62 |
+
Dropout probability for mlp outputs.
|
63 |
+
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
64 |
+
The dropout ratio for the embeddings.
|
65 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
66 |
+
The dropout ratio after computing the attention scores.
|
67 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
68 |
+
The non-linear activation function (function or string) in the decoder.
|
69 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
70 |
+
The maximum sequence length that this model might ever be used with.
|
71 |
+
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
|
72 |
+
The maximum sequence length that this model was trained with. This is used to determine the size of the
|
73 |
+
original RoPE embeddings when using long scaling.
|
74 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
75 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
76 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
77 |
+
The epsilon value used for the RMSNorm.
|
78 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
79 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
80 |
+
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
81 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
82 |
+
Whether to tie weight embeddings
|
83 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
84 |
+
The base period of the RoPE embeddings.
|
85 |
+
rope_scaling (`dict`, *optional*):
|
86 |
+
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
|
87 |
+
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and
|
88 |
+
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
|
89 |
+
divided by the number of attention heads divided by 2.
|
90 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
91 |
+
The id of the "beginning-of-sequence" token.
|
92 |
+
eos_token_id (`int`, *optional*, defaults to 32000):
|
93 |
+
The id of the "end-of-sequence" token.
|
94 |
+
pad_token_id (`int`, *optional*, defaults to 32000):
|
95 |
+
The id of the padding token.
|
96 |
+
sliding_window (`int`, *optional*):
|
97 |
+
Sliding window attention window size. If `None`, no sliding window is applied.
|
98 |
+
|
99 |
+
Example:
|
100 |
+
|
101 |
+
```python
|
102 |
+
>>> from transformers import Phi3Model, Phi3Config
|
103 |
+
|
104 |
+
>>> # Initializing a Phi-3 style configuration
|
105 |
+
>>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
|
106 |
+
|
107 |
+
>>> # Initializing a model from the configuration
|
108 |
+
>>> model = Phi3Model(configuration)
|
109 |
+
|
110 |
+
>>> # Accessing the model configuration
|
111 |
+
>>> configuration = model.config
|
112 |
+
```"""
|
113 |
+
|
114 |
+
model_type = "phi3"
|
115 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
116 |
+
|
117 |
+
def __init__(
|
118 |
+
self,
|
119 |
+
vocab_size=32064,
|
120 |
+
hidden_size=3072,
|
121 |
+
intermediate_size=8192,
|
122 |
+
num_hidden_layers=32,
|
123 |
+
num_attention_heads=32,
|
124 |
+
num_key_value_heads=None,
|
125 |
+
resid_pdrop=0.0,
|
126 |
+
embd_pdrop=0.0,
|
127 |
+
attention_dropout=0.0,
|
128 |
+
hidden_act="silu",
|
129 |
+
max_position_embeddings=4096,
|
130 |
+
original_max_position_embeddings=4096,
|
131 |
+
initializer_range=0.02,
|
132 |
+
rms_norm_eps=1e-5,
|
133 |
+
use_cache=True,
|
134 |
+
tie_word_embeddings=False,
|
135 |
+
rope_theta=10000.0,
|
136 |
+
rope_scaling=None,
|
137 |
+
bos_token_id=1,
|
138 |
+
eos_token_id=32000,
|
139 |
+
pad_token_id=32000,
|
140 |
+
sliding_window=None,
|
141 |
+
**kwargs,
|
142 |
+
):
|
143 |
+
self.vocab_size = vocab_size
|
144 |
+
self.hidden_size = hidden_size
|
145 |
+
self.intermediate_size = intermediate_size
|
146 |
+
self.num_hidden_layers = num_hidden_layers
|
147 |
+
self.num_attention_heads = num_attention_heads
|
148 |
+
|
149 |
+
if num_key_value_heads is None:
|
150 |
+
num_key_value_heads = num_attention_heads
|
151 |
+
|
152 |
+
self.num_key_value_heads = num_key_value_heads
|
153 |
+
self.resid_pdrop = resid_pdrop
|
154 |
+
self.embd_pdrop = embd_pdrop
|
155 |
+
self.attention_dropout = attention_dropout
|
156 |
+
self.hidden_act = hidden_act
|
157 |
+
self.max_position_embeddings = max_position_embeddings
|
158 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
159 |
+
self.initializer_range = initializer_range
|
160 |
+
self.rms_norm_eps = rms_norm_eps
|
161 |
+
self.use_cache = use_cache
|
162 |
+
self.rope_theta = rope_theta
|
163 |
+
self.rope_scaling = rope_scaling
|
164 |
+
self._rope_scaling_adjustment()
|
165 |
+
self._rope_scaling_validation()
|
166 |
+
self.sliding_window = sliding_window
|
167 |
+
|
168 |
+
super().__init__(
|
169 |
+
bos_token_id=bos_token_id,
|
170 |
+
eos_token_id=eos_token_id,
|
171 |
+
pad_token_id=pad_token_id,
|
172 |
+
tie_word_embeddings=tie_word_embeddings,
|
173 |
+
**kwargs,
|
174 |
+
)
|
175 |
+
|
176 |
+
def _rope_scaling_adjustment(self):
|
177 |
+
"""
|
178 |
+
Adjust the `type` of the `rope_scaling` configuration for backward compatibility.
|
179 |
+
"""
|
180 |
+
if self.rope_scaling is None:
|
181 |
+
return
|
182 |
+
|
183 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
184 |
+
|
185 |
+
# For backward compatibility if previous version used "su" or "yarn"
|
186 |
+
if rope_scaling_type is not None and rope_scaling_type in ["su", "yarn"]:
|
187 |
+
self.rope_scaling["type"] = "longrope"
|
188 |
+
|
189 |
+
def _rope_scaling_validation(self):
|
190 |
+
"""
|
191 |
+
Validate the `rope_scaling` configuration.
|
192 |
+
"""
|
193 |
+
if self.rope_scaling is None:
|
194 |
+
return
|
195 |
+
|
196 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
|
197 |
+
raise ValueError(
|
198 |
+
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
|
199 |
+
f"got {self.rope_scaling}"
|
200 |
+
)
|
201 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
202 |
+
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
|
203 |
+
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
|
204 |
+
if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
|
205 |
+
raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
|
206 |
+
if not (
|
207 |
+
isinstance(rope_scaling_short_factor, list)
|
208 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
|
209 |
+
):
|
210 |
+
raise ValueError(
|
211 |
+
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
|
212 |
+
)
|
213 |
+
if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
|
214 |
+
raise ValueError(
|
215 |
+
f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
|
216 |
+
)
|
217 |
+
if not (
|
218 |
+
isinstance(rope_scaling_long_factor, list)
|
219 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
|
220 |
+
):
|
221 |
+
raise ValueError(
|
222 |
+
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
|
223 |
+
)
|
224 |
+
if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
|
225 |
+
raise ValueError(
|
226 |
+
f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
|
227 |
+
)
|
generation_config.json
CHANGED
@@ -7,5 +7,5 @@
|
|
7 |
32007
|
8 |
],
|
9 |
"pad_token_id": 32000,
|
10 |
-
"transformers_version": "4.
|
11 |
}
|
|
|
7 |
32007
|
8 |
],
|
9 |
"pad_token_id": 32000,
|
10 |
+
"transformers_version": "4.42.4"
|
11 |
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2432922120
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:30d951cab5124d0c1cc1dd0fc91dc1ea77f915d743e4487c60165e7239353e41
|
3 |
size 2432922120
|
modeling_phi3.py
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
smash_config.json
CHANGED
@@ -14,7 +14,7 @@
|
|
14 |
"controlnet": "None",
|
15 |
"unet_dim": 4,
|
16 |
"device": "cuda",
|
17 |
-
"cache_dir": "/ceph/hdd/staff/charpent/.cache/
|
18 |
"batch_size": 1,
|
19 |
"model_name": "microsoft/Phi-3-mini-128k-instruct",
|
20 |
"task": "text_text_generation",
|
|
|
14 |
"controlnet": "None",
|
15 |
"unet_dim": 4,
|
16 |
"device": "cuda",
|
17 |
+
"cache_dir": "/ceph/hdd/staff/charpent/.cache/modelsi0oo5km_",
|
18 |
"batch_size": 1,
|
19 |
"model_name": "microsoft/Phi-3-mini-128k-instruct",
|
20 |
"task": "text_text_generation",
|
tokenizer.json
CHANGED
@@ -26,9 +26,9 @@
|
|
26 |
"content": "</s>",
|
27 |
"single_word": false,
|
28 |
"lstrip": false,
|
29 |
-
"rstrip":
|
30 |
"normalized": false,
|
31 |
-
"special":
|
32 |
},
|
33 |
{
|
34 |
"id": 32000,
|
@@ -44,7 +44,7 @@
|
|
44 |
"content": "<|assistant|>",
|
45 |
"single_word": false,
|
46 |
"lstrip": false,
|
47 |
-
"rstrip":
|
48 |
"normalized": false,
|
49 |
"special": true
|
50 |
},
|
@@ -53,7 +53,7 @@
|
|
53 |
"content": "<|placeholder1|>",
|
54 |
"single_word": false,
|
55 |
"lstrip": false,
|
56 |
-
"rstrip":
|
57 |
"normalized": false,
|
58 |
"special": true
|
59 |
},
|
@@ -62,7 +62,7 @@
|
|
62 |
"content": "<|placeholder2|>",
|
63 |
"single_word": false,
|
64 |
"lstrip": false,
|
65 |
-
"rstrip":
|
66 |
"normalized": false,
|
67 |
"special": true
|
68 |
},
|
@@ -71,7 +71,7 @@
|
|
71 |
"content": "<|placeholder3|>",
|
72 |
"single_word": false,
|
73 |
"lstrip": false,
|
74 |
-
"rstrip":
|
75 |
"normalized": false,
|
76 |
"special": true
|
77 |
},
|
@@ -80,7 +80,7 @@
|
|
80 |
"content": "<|placeholder4|>",
|
81 |
"single_word": false,
|
82 |
"lstrip": false,
|
83 |
-
"rstrip":
|
84 |
"normalized": false,
|
85 |
"special": true
|
86 |
},
|
@@ -89,7 +89,7 @@
|
|
89 |
"content": "<|system|>",
|
90 |
"single_word": false,
|
91 |
"lstrip": false,
|
92 |
-
"rstrip":
|
93 |
"normalized": false,
|
94 |
"special": true
|
95 |
},
|
@@ -98,7 +98,7 @@
|
|
98 |
"content": "<|end|>",
|
99 |
"single_word": false,
|
100 |
"lstrip": false,
|
101 |
-
"rstrip":
|
102 |
"normalized": false,
|
103 |
"special": true
|
104 |
},
|
@@ -107,7 +107,7 @@
|
|
107 |
"content": "<|placeholder5|>",
|
108 |
"single_word": false,
|
109 |
"lstrip": false,
|
110 |
-
"rstrip":
|
111 |
"normalized": false,
|
112 |
"special": true
|
113 |
},
|
@@ -116,7 +116,7 @@
|
|
116 |
"content": "<|placeholder6|>",
|
117 |
"single_word": false,
|
118 |
"lstrip": false,
|
119 |
-
"rstrip":
|
120 |
"normalized": false,
|
121 |
"special": true
|
122 |
},
|
@@ -125,7 +125,7 @@
|
|
125 |
"content": "<|user|>",
|
126 |
"single_word": false,
|
127 |
"lstrip": false,
|
128 |
-
"rstrip":
|
129 |
"normalized": false,
|
130 |
"special": true
|
131 |
}
|
@@ -150,12 +150,6 @@
|
|
150 |
"post_processor": {
|
151 |
"type": "TemplateProcessing",
|
152 |
"single": [
|
153 |
-
{
|
154 |
-
"SpecialToken": {
|
155 |
-
"id": "<s>",
|
156 |
-
"type_id": 0
|
157 |
-
}
|
158 |
-
},
|
159 |
{
|
160 |
"Sequence": {
|
161 |
"id": "A",
|
@@ -164,24 +158,12 @@
|
|
164 |
}
|
165 |
],
|
166 |
"pair": [
|
167 |
-
{
|
168 |
-
"SpecialToken": {
|
169 |
-
"id": "<s>",
|
170 |
-
"type_id": 0
|
171 |
-
}
|
172 |
-
},
|
173 |
{
|
174 |
"Sequence": {
|
175 |
"id": "A",
|
176 |
"type_id": 0
|
177 |
}
|
178 |
},
|
179 |
-
{
|
180 |
-
"SpecialToken": {
|
181 |
-
"id": "<s>",
|
182 |
-
"type_id": 1
|
183 |
-
}
|
184 |
-
},
|
185 |
{
|
186 |
"Sequence": {
|
187 |
"id": "B",
|
@@ -189,17 +171,7 @@
|
|
189 |
}
|
190 |
}
|
191 |
],
|
192 |
-
"special_tokens": {
|
193 |
-
"<s>": {
|
194 |
-
"id": "<s>",
|
195 |
-
"ids": [
|
196 |
-
1
|
197 |
-
],
|
198 |
-
"tokens": [
|
199 |
-
"<s>"
|
200 |
-
]
|
201 |
-
}
|
202 |
-
}
|
203 |
},
|
204 |
"decoder": {
|
205 |
"type": "Sequence",
|
|
|
26 |
"content": "</s>",
|
27 |
"single_word": false,
|
28 |
"lstrip": false,
|
29 |
+
"rstrip": true,
|
30 |
"normalized": false,
|
31 |
+
"special": false
|
32 |
},
|
33 |
{
|
34 |
"id": 32000,
|
|
|
44 |
"content": "<|assistant|>",
|
45 |
"single_word": false,
|
46 |
"lstrip": false,
|
47 |
+
"rstrip": true,
|
48 |
"normalized": false,
|
49 |
"special": true
|
50 |
},
|
|
|
53 |
"content": "<|placeholder1|>",
|
54 |
"single_word": false,
|
55 |
"lstrip": false,
|
56 |
+
"rstrip": true,
|
57 |
"normalized": false,
|
58 |
"special": true
|
59 |
},
|
|
|
62 |
"content": "<|placeholder2|>",
|
63 |
"single_word": false,
|
64 |
"lstrip": false,
|
65 |
+
"rstrip": true,
|
66 |
"normalized": false,
|
67 |
"special": true
|
68 |
},
|
|
|
71 |
"content": "<|placeholder3|>",
|
72 |
"single_word": false,
|
73 |
"lstrip": false,
|
74 |
+
"rstrip": true,
|
75 |
"normalized": false,
|
76 |
"special": true
|
77 |
},
|
|
|
80 |
"content": "<|placeholder4|>",
|
81 |
"single_word": false,
|
82 |
"lstrip": false,
|
83 |
+
"rstrip": true,
|
84 |
"normalized": false,
|
85 |
"special": true
|
86 |
},
|
|
|
89 |
"content": "<|system|>",
|
90 |
"single_word": false,
|
91 |
"lstrip": false,
|
92 |
+
"rstrip": true,
|
93 |
"normalized": false,
|
94 |
"special": true
|
95 |
},
|
|
|
98 |
"content": "<|end|>",
|
99 |
"single_word": false,
|
100 |
"lstrip": false,
|
101 |
+
"rstrip": true,
|
102 |
"normalized": false,
|
103 |
"special": true
|
104 |
},
|
|
|
107 |
"content": "<|placeholder5|>",
|
108 |
"single_word": false,
|
109 |
"lstrip": false,
|
110 |
+
"rstrip": true,
|
111 |
"normalized": false,
|
112 |
"special": true
|
113 |
},
|
|
|
116 |
"content": "<|placeholder6|>",
|
117 |
"single_word": false,
|
118 |
"lstrip": false,
|
119 |
+
"rstrip": true,
|
120 |
"normalized": false,
|
121 |
"special": true
|
122 |
},
|
|
|
125 |
"content": "<|user|>",
|
126 |
"single_word": false,
|
127 |
"lstrip": false,
|
128 |
+
"rstrip": true,
|
129 |
"normalized": false,
|
130 |
"special": true
|
131 |
}
|
|
|
150 |
"post_processor": {
|
151 |
"type": "TemplateProcessing",
|
152 |
"single": [
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
{
|
154 |
"Sequence": {
|
155 |
"id": "A",
|
|
|
158 |
}
|
159 |
],
|
160 |
"pair": [
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
{
|
162 |
"Sequence": {
|
163 |
"id": "A",
|
164 |
"type_id": 0
|
165 |
}
|
166 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
{
|
168 |
"Sequence": {
|
169 |
"id": "B",
|
|
|
171 |
}
|
172 |
}
|
173 |
],
|
174 |
+
"special_tokens": {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
},
|
176 |
"decoder": {
|
177 |
"type": "Sequence",
|
tokenizer_config.json
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
{
|
2 |
-
"add_bos_token":
|
3 |
"add_eos_token": false,
|
|
|
4 |
"added_tokens_decoder": {
|
5 |
"0": {
|
6 |
"content": "<unk>",
|
@@ -22,9 +23,9 @@
|
|
22 |
"content": "</s>",
|
23 |
"lstrip": false,
|
24 |
"normalized": false,
|
25 |
-
"rstrip":
|
26 |
"single_word": false,
|
27 |
-
"special":
|
28 |
},
|
29 |
"32000": {
|
30 |
"content": "<|endoftext|>",
|
@@ -38,7 +39,7 @@
|
|
38 |
"content": "<|assistant|>",
|
39 |
"lstrip": false,
|
40 |
"normalized": false,
|
41 |
-
"rstrip":
|
42 |
"single_word": false,
|
43 |
"special": true
|
44 |
},
|
@@ -46,7 +47,7 @@
|
|
46 |
"content": "<|placeholder1|>",
|
47 |
"lstrip": false,
|
48 |
"normalized": false,
|
49 |
-
"rstrip":
|
50 |
"single_word": false,
|
51 |
"special": true
|
52 |
},
|
@@ -54,7 +55,7 @@
|
|
54 |
"content": "<|placeholder2|>",
|
55 |
"lstrip": false,
|
56 |
"normalized": false,
|
57 |
-
"rstrip":
|
58 |
"single_word": false,
|
59 |
"special": true
|
60 |
},
|
@@ -62,7 +63,7 @@
|
|
62 |
"content": "<|placeholder3|>",
|
63 |
"lstrip": false,
|
64 |
"normalized": false,
|
65 |
-
"rstrip":
|
66 |
"single_word": false,
|
67 |
"special": true
|
68 |
},
|
@@ -70,7 +71,7 @@
|
|
70 |
"content": "<|placeholder4|>",
|
71 |
"lstrip": false,
|
72 |
"normalized": false,
|
73 |
-
"rstrip":
|
74 |
"single_word": false,
|
75 |
"special": true
|
76 |
},
|
@@ -78,7 +79,7 @@
|
|
78 |
"content": "<|system|>",
|
79 |
"lstrip": false,
|
80 |
"normalized": false,
|
81 |
-
"rstrip":
|
82 |
"single_word": false,
|
83 |
"special": true
|
84 |
},
|
@@ -86,7 +87,7 @@
|
|
86 |
"content": "<|end|>",
|
87 |
"lstrip": false,
|
88 |
"normalized": false,
|
89 |
-
"rstrip":
|
90 |
"single_word": false,
|
91 |
"special": true
|
92 |
},
|
@@ -94,7 +95,7 @@
|
|
94 |
"content": "<|placeholder5|>",
|
95 |
"lstrip": false,
|
96 |
"normalized": false,
|
97 |
-
"rstrip":
|
98 |
"single_word": false,
|
99 |
"special": true
|
100 |
},
|
@@ -102,7 +103,7 @@
|
|
102 |
"content": "<|placeholder6|>",
|
103 |
"lstrip": false,
|
104 |
"normalized": false,
|
105 |
-
"rstrip":
|
106 |
"single_word": false,
|
107 |
"special": true
|
108 |
},
|
@@ -110,13 +111,13 @@
|
|
110 |
"content": "<|user|>",
|
111 |
"lstrip": false,
|
112 |
"normalized": false,
|
113 |
-
"rstrip":
|
114 |
"single_word": false,
|
115 |
"special": true
|
116 |
}
|
117 |
},
|
118 |
"bos_token": "<s>",
|
119 |
-
"chat_template": "{
|
120 |
"clean_up_tokenization_spaces": false,
|
121 |
"eos_token": "<|endoftext|>",
|
122 |
"legacy": false,
|
|
|
1 |
{
|
2 |
+
"add_bos_token": false,
|
3 |
"add_eos_token": false,
|
4 |
+
"add_prefix_space": null,
|
5 |
"added_tokens_decoder": {
|
6 |
"0": {
|
7 |
"content": "<unk>",
|
|
|
23 |
"content": "</s>",
|
24 |
"lstrip": false,
|
25 |
"normalized": false,
|
26 |
+
"rstrip": true,
|
27 |
"single_word": false,
|
28 |
+
"special": false
|
29 |
},
|
30 |
"32000": {
|
31 |
"content": "<|endoftext|>",
|
|
|
39 |
"content": "<|assistant|>",
|
40 |
"lstrip": false,
|
41 |
"normalized": false,
|
42 |
+
"rstrip": true,
|
43 |
"single_word": false,
|
44 |
"special": true
|
45 |
},
|
|
|
47 |
"content": "<|placeholder1|>",
|
48 |
"lstrip": false,
|
49 |
"normalized": false,
|
50 |
+
"rstrip": true,
|
51 |
"single_word": false,
|
52 |
"special": true
|
53 |
},
|
|
|
55 |
"content": "<|placeholder2|>",
|
56 |
"lstrip": false,
|
57 |
"normalized": false,
|
58 |
+
"rstrip": true,
|
59 |
"single_word": false,
|
60 |
"special": true
|
61 |
},
|
|
|
63 |
"content": "<|placeholder3|>",
|
64 |
"lstrip": false,
|
65 |
"normalized": false,
|
66 |
+
"rstrip": true,
|
67 |
"single_word": false,
|
68 |
"special": true
|
69 |
},
|
|
|
71 |
"content": "<|placeholder4|>",
|
72 |
"lstrip": false,
|
73 |
"normalized": false,
|
74 |
+
"rstrip": true,
|
75 |
"single_word": false,
|
76 |
"special": true
|
77 |
},
|
|
|
79 |
"content": "<|system|>",
|
80 |
"lstrip": false,
|
81 |
"normalized": false,
|
82 |
+
"rstrip": true,
|
83 |
"single_word": false,
|
84 |
"special": true
|
85 |
},
|
|
|
87 |
"content": "<|end|>",
|
88 |
"lstrip": false,
|
89 |
"normalized": false,
|
90 |
+
"rstrip": true,
|
91 |
"single_word": false,
|
92 |
"special": true
|
93 |
},
|
|
|
95 |
"content": "<|placeholder5|>",
|
96 |
"lstrip": false,
|
97 |
"normalized": false,
|
98 |
+
"rstrip": true,
|
99 |
"single_word": false,
|
100 |
"special": true
|
101 |
},
|
|
|
103 |
"content": "<|placeholder6|>",
|
104 |
"lstrip": false,
|
105 |
"normalized": false,
|
106 |
+
"rstrip": true,
|
107 |
"single_word": false,
|
108 |
"special": true
|
109 |
},
|
|
|
111 |
"content": "<|user|>",
|
112 |
"lstrip": false,
|
113 |
"normalized": false,
|
114 |
+
"rstrip": true,
|
115 |
"single_word": false,
|
116 |
"special": true
|
117 |
}
|
118 |
},
|
119 |
"bos_token": "<s>",
|
120 |
+
"chat_template": "{% for message in messages %}{% if message['role'] == 'system' %}{{'<|system|>\n' + message['content'] + '<|end|>\n'}}{% elif message['role'] == 'user' %}{{'<|user|>\n' + message['content'] + '<|end|>\n'}}{% elif message['role'] == 'assistant' %}{{'<|assistant|>\n' + message['content'] + '<|end|>\n'}}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>\n' }}{% else %}{{ eos_token }}{% endif %}",
|
121 |
"clean_up_tokenization_spaces": false,
|
122 |
"eos_token": "<|endoftext|>",
|
123 |
"legacy": false,
|