Upload folder using huggingface_hub (#1)
Browse files- 9a1c98f00cfe3173bddb4445a77c3af42e2cfebe0e6172cffd34ce1ec4337f21 (32eba32e991f01644a301f74defe98cc0fffd998)
- 25554b9a3a218560d13c40cdd3f8909b8082e6d494c59f8e8ebccfb8298a8795 (66612f194b75fcd42d30e3159b3a6f81be3706dd)
- README.md +85 -0
- config.json +53 -0
- configuration_camelidae.py +207 -0
- generation_config.json +10 -0
- model.safetensors +3 -0
- modeling_camelidae.py +1240 -0
- smash_config.json +31 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +43 -0
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
|
3 |
+
base_model: hywu/Camelidae-8x7B
|
4 |
+
metrics:
|
5 |
+
- memory_disk
|
6 |
+
- memory_inference
|
7 |
+
- inference_latency
|
8 |
+
- inference_throughput
|
9 |
+
- inference_CO2_emissions
|
10 |
+
- inference_energy_consumption
|
11 |
+
tags:
|
12 |
+
- pruna-ai
|
13 |
+
---
|
14 |
+
<!-- header start -->
|
15 |
+
<!-- 200823 -->
|
16 |
+
<div style="width: auto; margin-left: auto; margin-right: auto">
|
17 |
+
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
|
18 |
+
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
19 |
+
</a>
|
20 |
+
</div>
|
21 |
+
<!-- header end -->
|
22 |
+
|
23 |
+
[![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI)
|
24 |
+
[![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI)
|
25 |
+
[![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
|
26 |
+
[![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/CP4VSgck)
|
27 |
+
|
28 |
+
# Simply make AI models cheaper, smaller, faster, and greener!
|
29 |
+
|
30 |
+
- Give a thumbs up if you like this model!
|
31 |
+
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
|
32 |
+
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
|
33 |
+
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
|
34 |
+
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
|
35 |
+
|
36 |
+
## Results
|
37 |
+
|
38 |
+
![image info](./plots.png)
|
39 |
+
|
40 |
+
**Frequently Asked Questions**
|
41 |
+
- ***How does the compression work?*** The model is compressed with llm-int8.
|
42 |
+
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
|
43 |
+
- ***How is the model efficiency evaluated?*** These results were obtained on HARDWARE_NAME with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
|
44 |
+
- ***What is the model format?*** We use safetensors.
|
45 |
+
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
|
46 |
+
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
|
47 |
+
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
|
48 |
+
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
|
49 |
+
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
|
50 |
+
|
51 |
+
## Setup
|
52 |
+
|
53 |
+
You can run the smashed model with these steps:
|
54 |
+
|
55 |
+
0. Check requirements from the original repo hywu/Camelidae-8x7B installed. In particular, check python, cuda, and transformers versions.
|
56 |
+
1. Make sure that you have installed quantization related packages.
|
57 |
+
```bash
|
58 |
+
pip install transformers accelerate bitsandbytes>0.37.0
|
59 |
+
```
|
60 |
+
2. Load & run the model.
|
61 |
+
```python
|
62 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
63 |
+
|
64 |
+
|
65 |
+
model = AutoModelForCausalLM.from_pretrained("PrunaAI/hywu-Camelidae-8x7B-bnb-4bit-smashed", trust_remote_code=True, device_map='auto')
|
66 |
+
tokenizer = AutoTokenizer.from_pretrained("hywu/Camelidae-8x7B")
|
67 |
+
|
68 |
+
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
|
69 |
+
|
70 |
+
outputs = model.generate(input_ids, max_new_tokens=216)
|
71 |
+
tokenizer.decode(outputs[0])
|
72 |
+
```
|
73 |
+
|
74 |
+
## Configurations
|
75 |
+
|
76 |
+
The configuration info are in `smash_config.json`.
|
77 |
+
|
78 |
+
## Credits & License
|
79 |
+
|
80 |
+
The license of the smashed model follows the license of the original model. Please check the license of the original model hywu/Camelidae-8x7B before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
|
81 |
+
|
82 |
+
## Want to compress other models?
|
83 |
+
|
84 |
+
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
|
85 |
+
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
|
config.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/ceph/hdd/staff/charpent/.cache/models1trx2z9_cod73un1",
|
3 |
+
"adapter_dim": 512,
|
4 |
+
"architectures": [
|
5 |
+
"LlamaForCausalLM"
|
6 |
+
],
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_camelidae.CamelidaeConfig",
|
9 |
+
"AutoModel": "hywu/Camelidae-8x7B--modeling_camelidae.LlamaModel",
|
10 |
+
"AutoModelForCausalLM": "modeling_camelidae.LlamaForCausalLM"
|
11 |
+
},
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"eos_token_id": 2,
|
14 |
+
"hidden_act": "silu",
|
15 |
+
"hidden_size": 4096,
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 11008,
|
18 |
+
"max_position_embeddings": 4096,
|
19 |
+
"model_type": "llama",
|
20 |
+
"moe_dtype": "bfloat16",
|
21 |
+
"moe_scaling": 0.25,
|
22 |
+
"num_attention_heads": 32,
|
23 |
+
"num_experts": 8,
|
24 |
+
"num_hidden_layers": 32,
|
25 |
+
"num_key_value_heads": 32,
|
26 |
+
"output_router_logits": false,
|
27 |
+
"pretraining_tp": 1,
|
28 |
+
"quantization_config": {
|
29 |
+
"_load_in_4bit": true,
|
30 |
+
"_load_in_8bit": false,
|
31 |
+
"bnb_4bit_compute_dtype": "bfloat16",
|
32 |
+
"bnb_4bit_quant_storage": "uint8",
|
33 |
+
"bnb_4bit_quant_type": "fp4",
|
34 |
+
"bnb_4bit_use_double_quant": false,
|
35 |
+
"llm_int8_enable_fp32_cpu_offload": false,
|
36 |
+
"llm_int8_has_fp16_weight": false,
|
37 |
+
"llm_int8_skip_modules": [
|
38 |
+
"lm_head"
|
39 |
+
],
|
40 |
+
"llm_int8_threshold": 6.0,
|
41 |
+
"load_in_4bit": true,
|
42 |
+
"load_in_8bit": false,
|
43 |
+
"quant_method": "bitsandbytes"
|
44 |
+
},
|
45 |
+
"rms_norm_eps": 1e-05,
|
46 |
+
"rope_scaling": null,
|
47 |
+
"tie_word_embeddings": false,
|
48 |
+
"topk": 2,
|
49 |
+
"torch_dtype": "float16",
|
50 |
+
"transformers_version": "4.40.0",
|
51 |
+
"use_cache": true,
|
52 |
+
"vocab_size": 32000
|
53 |
+
}
|
configuration_camelidae.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" LLaMA model configuration"""
|
21 |
+
|
22 |
+
from transformers.configuration_utils import PretrainedConfig
|
23 |
+
from transformers.utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
29 |
+
|
30 |
+
|
31 |
+
class CamelidaeConfig(PretrainedConfig):
|
32 |
+
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
|
34 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
35 |
+
defaults will yield a similar configuration to that of the LLaMA-7B.
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
43 |
+
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
|
44 |
+
`inputs_ids` passed when calling [`LlamaModel`]
|
45 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
46 |
+
Dimension of the hidden representations.
|
47 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
48 |
+
Dimension of the MLP representations.
|
49 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
50 |
+
Number of hidden layers in the Transformer encoder.
|
51 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
52 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
53 |
+
num_key_value_heads (`int`, *optional*):
|
54 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
55 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
56 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
57 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
58 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
59 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
60 |
+
`num_attention_heads`.
|
61 |
+
pretraining_tp (`int`, *optional*, defaults to `1`):
|
62 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
63 |
+
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
64 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
65 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
66 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
67 |
+
The non-linear activation function (function or string) in the decoder.
|
68 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
69 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
70 |
+
just in case (e.g., 512 or 1024 or 2048).
|
71 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
72 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
73 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
74 |
+
The epsilon used by the rms normalization layers.
|
75 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
76 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
77 |
+
relevant if `config.is_decoder=True`.
|
78 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
79 |
+
Whether to tie weight embeddings
|
80 |
+
rope_scaling (`Dict`, *optional*):
|
81 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
82 |
+
strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
|
83 |
+
is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
84 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
85 |
+
these scaling strategies behave:
|
86 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
87 |
+
experimental feature, subject to breaking API changes in future versions.
|
88 |
+
moe_dtype (`str`, *optional*, default to `"bfloat16"`):
|
89 |
+
The `dtype` used for the moe layers. It is preferable to keep the `dtype` to `"bfloat16"`
|
90 |
+
moe_scaling (`float`, *optional*, defaults to 0.25):
|
91 |
+
The scaling factor of expert.
|
92 |
+
num_experts (`int`, *optional*, defaults to 8):
|
93 |
+
The number of MoE expert
|
94 |
+
topk (`int`, *optional*, defaults to 2):
|
95 |
+
The number of experts to root per-token, can be also interpreted as the `top-p` routing
|
96 |
+
parameter
|
97 |
+
output_router_logits (`bool`, *optional*, defaults to `False`):
|
98 |
+
Whether or not the router logits should be returned by the model. Enabeling this will also
|
99 |
+
allow the model to output the auxiliary loss.
|
100 |
+
adapter_dim (`int`, *optional*, defaults to 64):
|
101 |
+
Dimension of the adapter.
|
102 |
+
Example:
|
103 |
+
|
104 |
+
```python
|
105 |
+
>>> from transformers import CamelidaeModel, CamelidaeConfig
|
106 |
+
|
107 |
+
>>> # Initializing a Camelidae camelidae-7b style configuration
|
108 |
+
>>> configuration = CamelidaeConfig()
|
109 |
+
|
110 |
+
>>> # Initializing a model from the camelidae-7b style configuration
|
111 |
+
>>> model = CamelidaeModel(configuration)
|
112 |
+
|
113 |
+
>>> # Accessing the model configuration
|
114 |
+
>>> configuration = model.config
|
115 |
+
```"""
|
116 |
+
model_type = "llama"
|
117 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
118 |
+
|
119 |
+
def __init__(
|
120 |
+
self,
|
121 |
+
vocab_size=32000,
|
122 |
+
hidden_size=4096,
|
123 |
+
intermediate_size=11008,
|
124 |
+
num_hidden_layers=32,
|
125 |
+
num_attention_heads=32,
|
126 |
+
num_key_value_heads=None,
|
127 |
+
hidden_act="silu",
|
128 |
+
max_position_embeddings=2048,
|
129 |
+
initializer_range=0.02,
|
130 |
+
rms_norm_eps=1e-6,
|
131 |
+
use_cache=True,
|
132 |
+
pad_token_id=None,
|
133 |
+
bos_token_id=1,
|
134 |
+
eos_token_id=2,
|
135 |
+
pretraining_tp=1,
|
136 |
+
tie_word_embeddings=False,
|
137 |
+
rope_scaling=None,
|
138 |
+
moe_dtype="bfloat16",
|
139 |
+
moe_scaling=0.25,
|
140 |
+
num_experts=8,
|
141 |
+
topk=2,
|
142 |
+
output_router_logits=False,
|
143 |
+
adapter_dim=64,
|
144 |
+
**kwargs,
|
145 |
+
):
|
146 |
+
self.vocab_size = vocab_size
|
147 |
+
self.max_position_embeddings = max_position_embeddings
|
148 |
+
self.hidden_size = hidden_size
|
149 |
+
self.intermediate_size = intermediate_size
|
150 |
+
self.num_hidden_layers = num_hidden_layers
|
151 |
+
self.num_attention_heads = num_attention_heads
|
152 |
+
|
153 |
+
# for backward compatibility
|
154 |
+
if num_key_value_heads is None:
|
155 |
+
num_key_value_heads = num_attention_heads
|
156 |
+
|
157 |
+
self.num_key_value_heads = num_key_value_heads
|
158 |
+
self.hidden_act = hidden_act
|
159 |
+
self.initializer_range = initializer_range
|
160 |
+
self.rms_norm_eps = rms_norm_eps
|
161 |
+
self.pretraining_tp = pretraining_tp
|
162 |
+
self.use_cache = use_cache
|
163 |
+
self.rope_scaling = rope_scaling
|
164 |
+
self._rope_scaling_validation()
|
165 |
+
|
166 |
+
self.moe_dtype = moe_dtype
|
167 |
+
self.moe_scaling = moe_scaling
|
168 |
+
self.num_experts = num_experts
|
169 |
+
self.topk = topk
|
170 |
+
self.output_router_logits = output_router_logits
|
171 |
+
|
172 |
+
self.adapter_dim = adapter_dim
|
173 |
+
|
174 |
+
super().__init__(
|
175 |
+
pad_token_id=pad_token_id,
|
176 |
+
bos_token_id=bos_token_id,
|
177 |
+
eos_token_id=eos_token_id,
|
178 |
+
tie_word_embeddings=tie_word_embeddings,
|
179 |
+
**kwargs,
|
180 |
+
)
|
181 |
+
|
182 |
+
def _rope_scaling_validation(self):
|
183 |
+
"""
|
184 |
+
Validate the `rope_scaling` configuration.
|
185 |
+
"""
|
186 |
+
if self.rope_scaling is None:
|
187 |
+
return
|
188 |
+
|
189 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
190 |
+
raise ValueError(
|
191 |
+
"`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, "
|
192 |
+
f"got {self.rope_scaling}"
|
193 |
+
)
|
194 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
195 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
196 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
197 |
+
raise ValueError(
|
198 |
+
f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
199 |
+
)
|
200 |
+
if (
|
201 |
+
rope_scaling_factor is None
|
202 |
+
or not isinstance(rope_scaling_factor, float)
|
203 |
+
or rope_scaling_factor <= 1.0
|
204 |
+
):
|
205 |
+
raise ValueError(
|
206 |
+
f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}"
|
207 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 1,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"max_length": 4096,
|
6 |
+
"pad_token_id": 0,
|
7 |
+
"temperature": 0.6,
|
8 |
+
"top_p": 0.9,
|
9 |
+
"transformers_version": "4.40.0"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af3a39a0bc72e9fa0a1486075bbfa0a3de527d8444e5207241f0f2aff17f4906
|
3 |
+
size 4772693800
|
modeling_camelidae.py
ADDED
@@ -0,0 +1,1240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch LLaMA model."""
|
21 |
+
import math
|
22 |
+
from typing import List, Optional, Tuple, Union
|
23 |
+
from dataclasses import dataclass
|
24 |
+
|
25 |
+
import numpy as np
|
26 |
+
import copy
|
27 |
+
|
28 |
+
import torch
|
29 |
+
import torch.nn.functional as F
|
30 |
+
import torch.utils.checkpoint
|
31 |
+
from torch import nn
|
32 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
33 |
+
from torch.distributions.normal import Normal
|
34 |
+
|
35 |
+
from transformers.activations import ACT2FN
|
36 |
+
from transformers.modeling_outputs import (
|
37 |
+
BaseModelOutputWithPast,
|
38 |
+
CausalLMOutputWithPast,
|
39 |
+
MoECausalLMOutputWithPast,
|
40 |
+
)
|
41 |
+
from transformers.modeling_utils import PreTrainedModel
|
42 |
+
from transformers.utils import (
|
43 |
+
ModelOutput,
|
44 |
+
add_start_docstrings,
|
45 |
+
add_start_docstrings_to_model_forward,
|
46 |
+
logging,
|
47 |
+
replace_return_docstrings,
|
48 |
+
)
|
49 |
+
|
50 |
+
from .configuration_camelidae import CamelidaeConfig
|
51 |
+
|
52 |
+
logger = logging.get_logger(__name__)
|
53 |
+
|
54 |
+
_CONFIG_FOR_DOC = "CamelidaeConfig"
|
55 |
+
|
56 |
+
|
57 |
+
@dataclass
|
58 |
+
class MoEModelOutputWithPast(ModelOutput):
|
59 |
+
last_hidden_state: torch.FloatTensor = None
|
60 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
61 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
62 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
63 |
+
router_logits: Optional[Tuple[torch.FloatTensor]] = None
|
64 |
+
|
65 |
+
|
66 |
+
@dataclass
|
67 |
+
class MoECausalLMOutputWithPast(ModelOutput):
|
68 |
+
loss: Optional[torch.FloatTensor] = None
|
69 |
+
aux_loss: Optional[torch.FloatTensor] = None
|
70 |
+
logits: torch.FloatTensor = None
|
71 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
72 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
73 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
74 |
+
router_logits: Optional[Tuple[torch.FloatTensor]] = None
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
79 |
+
def _make_causal_mask(
|
80 |
+
input_ids_shape: torch.Size,
|
81 |
+
dtype: torch.dtype,
|
82 |
+
device: torch.device,
|
83 |
+
past_key_values_length: int = 0,
|
84 |
+
):
|
85 |
+
"""
|
86 |
+
Make causal mask used for bi-directional self-attention.
|
87 |
+
"""
|
88 |
+
bsz, tgt_len = input_ids_shape
|
89 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
90 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
91 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
92 |
+
mask = mask.to(dtype)
|
93 |
+
|
94 |
+
if past_key_values_length > 0:
|
95 |
+
mask = torch.cat(
|
96 |
+
[
|
97 |
+
torch.zeros(
|
98 |
+
tgt_len, past_key_values_length, dtype=dtype, device=device
|
99 |
+
),
|
100 |
+
mask,
|
101 |
+
],
|
102 |
+
dim=-1,
|
103 |
+
)
|
104 |
+
return mask[None, None, :, :].expand(
|
105 |
+
bsz, 1, tgt_len, tgt_len + past_key_values_length
|
106 |
+
)
|
107 |
+
|
108 |
+
|
109 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
110 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
111 |
+
"""
|
112 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
113 |
+
"""
|
114 |
+
bsz, src_len = mask.size()
|
115 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
116 |
+
|
117 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
118 |
+
|
119 |
+
inverted_mask = 1.0 - expanded_mask
|
120 |
+
|
121 |
+
return inverted_mask.masked_fill(
|
122 |
+
inverted_mask.to(torch.bool), torch.finfo(dtype).min
|
123 |
+
)
|
124 |
+
|
125 |
+
|
126 |
+
class LlamaRMSNorm(nn.Module):
|
127 |
+
def __init__(self, hidden_size, eps=1e-6):
|
128 |
+
"""
|
129 |
+
LlamaRMSNorm is equivalent to T5LayerNorm
|
130 |
+
"""
|
131 |
+
super().__init__()
|
132 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
133 |
+
self.variance_epsilon = eps
|
134 |
+
|
135 |
+
def forward(self, hidden_states):
|
136 |
+
input_dtype = hidden_states.dtype
|
137 |
+
hidden_states = hidden_states.to(torch.float32)
|
138 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
139 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
140 |
+
return self.weight * hidden_states.to(input_dtype)
|
141 |
+
|
142 |
+
|
143 |
+
class LlamaRotaryEmbedding(torch.nn.Module):
|
144 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
145 |
+
super().__init__()
|
146 |
+
|
147 |
+
self.dim = dim
|
148 |
+
self.max_position_embeddings = max_position_embeddings
|
149 |
+
self.base = base
|
150 |
+
inv_freq = 1.0 / (
|
151 |
+
self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
152 |
+
)
|
153 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
154 |
+
|
155 |
+
# Build here to make `torch.jit.trace` work.
|
156 |
+
self._set_cos_sin_cache(
|
157 |
+
seq_len=max_position_embeddings,
|
158 |
+
device=self.inv_freq.device,
|
159 |
+
dtype=torch.get_default_dtype(),
|
160 |
+
)
|
161 |
+
|
162 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
163 |
+
self.max_seq_len_cached = seq_len
|
164 |
+
t = torch.arange(
|
165 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
166 |
+
)
|
167 |
+
|
168 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
169 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
170 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
171 |
+
self.register_buffer(
|
172 |
+
"cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False
|
173 |
+
)
|
174 |
+
self.register_buffer(
|
175 |
+
"sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False
|
176 |
+
)
|
177 |
+
|
178 |
+
def forward(self, x, seq_len=None):
|
179 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
180 |
+
if seq_len > self.max_seq_len_cached:
|
181 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
182 |
+
|
183 |
+
return (
|
184 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
185 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
186 |
+
)
|
187 |
+
|
188 |
+
|
189 |
+
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
190 |
+
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
191 |
+
|
192 |
+
def __init__(
|
193 |
+
self,
|
194 |
+
dim,
|
195 |
+
max_position_embeddings=2048,
|
196 |
+
base=10000,
|
197 |
+
device=None,
|
198 |
+
scaling_factor=1.0,
|
199 |
+
):
|
200 |
+
self.scaling_factor = scaling_factor
|
201 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
202 |
+
|
203 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
204 |
+
self.max_seq_len_cached = seq_len
|
205 |
+
t = torch.arange(
|
206 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
207 |
+
)
|
208 |
+
t = t / self.scaling_factor
|
209 |
+
|
210 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
211 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
212 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
213 |
+
self.register_buffer(
|
214 |
+
"cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False
|
215 |
+
)
|
216 |
+
self.register_buffer(
|
217 |
+
"sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False
|
218 |
+
)
|
219 |
+
|
220 |
+
|
221 |
+
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
222 |
+
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
223 |
+
|
224 |
+
def __init__(
|
225 |
+
self,
|
226 |
+
dim,
|
227 |
+
max_position_embeddings=2048,
|
228 |
+
base=10000,
|
229 |
+
device=None,
|
230 |
+
scaling_factor=1.0,
|
231 |
+
):
|
232 |
+
self.scaling_factor = scaling_factor
|
233 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
234 |
+
|
235 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
236 |
+
self.max_seq_len_cached = seq_len
|
237 |
+
|
238 |
+
if seq_len > self.max_position_embeddings:
|
239 |
+
base = self.base * (
|
240 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings)
|
241 |
+
- (self.scaling_factor - 1)
|
242 |
+
) ** (self.dim / (self.dim - 2))
|
243 |
+
inv_freq = 1.0 / (
|
244 |
+
base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
245 |
+
)
|
246 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
247 |
+
|
248 |
+
t = torch.arange(
|
249 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
250 |
+
)
|
251 |
+
|
252 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
253 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
254 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
255 |
+
self.register_buffer(
|
256 |
+
"cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False
|
257 |
+
)
|
258 |
+
self.register_buffer(
|
259 |
+
"sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False
|
260 |
+
)
|
261 |
+
|
262 |
+
|
263 |
+
def rotate_half(x):
|
264 |
+
"""Rotates half the hidden dims of the input."""
|
265 |
+
x1 = x[..., : x.shape[-1] // 2]
|
266 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
267 |
+
return torch.cat((-x2, x1), dim=-1)
|
268 |
+
|
269 |
+
|
270 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
271 |
+
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
272 |
+
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
273 |
+
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
274 |
+
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
275 |
+
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
276 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
277 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
278 |
+
return q_embed, k_embed
|
279 |
+
|
280 |
+
|
281 |
+
# Llama MoE
|
282 |
+
def load_balancing_loss_func(gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2) -> float:
|
283 |
+
r"""
|
284 |
+
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
285 |
+
|
286 |
+
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
287 |
+
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
288 |
+
experts is too unbalanced.
|
289 |
+
|
290 |
+
Args:
|
291 |
+
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
|
292 |
+
Logits from the `gate`, should be a tuple of tensors. Shape: [batch_size, seqeunce_length, num_experts].
|
293 |
+
num_experts (`int`, *optional*):
|
294 |
+
Number of experts
|
295 |
+
|
296 |
+
Returns:
|
297 |
+
The auxiliary loss.
|
298 |
+
"""
|
299 |
+
if gate_logits is None:
|
300 |
+
return 0
|
301 |
+
|
302 |
+
if isinstance(gate_logits, tuple):
|
303 |
+
# cat along the layers?
|
304 |
+
compute_device = gate_logits[0].device
|
305 |
+
gate_logits = torch.cat([gate.to(compute_device) for gate in gate_logits], dim=0)
|
306 |
+
|
307 |
+
routing_weights, selected_experts = torch.topk(gate_logits, top_k, dim=-1)
|
308 |
+
routing_weights = routing_weights.softmax(dim=-1)
|
309 |
+
|
310 |
+
# cast the expert indices to int64, otherwise one-hot encoding will fail
|
311 |
+
if selected_experts.dtype != torch.int64:
|
312 |
+
selected_experts = selected_experts.to(torch.int64)
|
313 |
+
|
314 |
+
if len(selected_experts.shape) == 2:
|
315 |
+
selected_experts = selected_experts.unsqueeze(2)
|
316 |
+
|
317 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
|
318 |
+
|
319 |
+
# For a given token, determine if it was routed to a given expert.
|
320 |
+
expert_mask = torch.max(expert_mask, axis=-2).values
|
321 |
+
|
322 |
+
# cast to float32 otherwise mean will fail
|
323 |
+
expert_mask = expert_mask.to(torch.float32)
|
324 |
+
tokens_per_group_and_expert = torch.mean(expert_mask, axis=-2)
|
325 |
+
|
326 |
+
router_prob_per_group_and_expert = torch.mean(routing_weights, axis=-1)
|
327 |
+
return torch.mean(tokens_per_group_and_expert * router_prob_per_group_and_expert.unsqueeze(-1)) * (num_experts**2)
|
328 |
+
|
329 |
+
class ParallelAdapterMLP(nn.Module):
|
330 |
+
def __init__(self, config, adapter_dim, adapter_scaling):
|
331 |
+
super().__init__()
|
332 |
+
self.config = config
|
333 |
+
self.intermediate_size = config.intermediate_size
|
334 |
+
self.hidden_size = config.hidden_size
|
335 |
+
self.adapter_down = nn.Linear(self.hidden_size, adapter_dim, bias=False)
|
336 |
+
self.adapter_up = nn.Linear(adapter_dim, self.hidden_size, bias=False)
|
337 |
+
self.adapter_act = nn.GELU()
|
338 |
+
|
339 |
+
self.adapter_dropout = nn.Dropout(p=0.1)
|
340 |
+
self.adapter_scaling = adapter_scaling
|
341 |
+
|
342 |
+
def forward(self, x):
|
343 |
+
x = self.adapter_dropout(x)
|
344 |
+
x = self.adapter_scaling * self.adapter_up(self.adapter_act(self.adapter_down(x)))
|
345 |
+
return x
|
346 |
+
|
347 |
+
|
348 |
+
class CamelidaeGateAdapter(nn.Module):
|
349 |
+
def __init__(self, config: CamelidaeConfig):
|
350 |
+
super().__init__()
|
351 |
+
|
352 |
+
self.intermediate_size = config.intermediate_size
|
353 |
+
self.hidden_size = config.hidden_size
|
354 |
+
|
355 |
+
# Step 1: Router
|
356 |
+
self.num_experts = config.num_experts
|
357 |
+
self.topk = config.topk
|
358 |
+
self.router = nn.Linear(
|
359 |
+
config.hidden_size, self.num_experts, bias=False
|
360 |
+
)
|
361 |
+
self.dtype = getattr(torch, config.moe_dtype)
|
362 |
+
|
363 |
+
# Step 2: Get the experts
|
364 |
+
self.experts = nn.ModuleDict()
|
365 |
+
for idx in range(config.num_experts):
|
366 |
+
self.experts[f"expert_{idx}"] = ParallelAdapterMLP(config, config.adapter_dim, config.moe_scaling)
|
367 |
+
|
368 |
+
def forward(self, input_hidden_states, output_hidden_states, router_hidden_states):
|
369 |
+
orig_shape = output_hidden_states.shape
|
370 |
+
input_hidden_states = input_hidden_states.view(-1, input_hidden_states.shape[-1])
|
371 |
+
output_hidden_states = output_hidden_states.view(-1, output_hidden_states.shape[-1])
|
372 |
+
router_hidden_states = router_hidden_states.view(-1, router_hidden_states.shape[-1])
|
373 |
+
|
374 |
+
router_logits = self.router(router_hidden_states)
|
375 |
+
|
376 |
+
expert_weights, expert_indices = torch.topk(router_logits, self.topk, dim=-1)
|
377 |
+
expert_weights = expert_weights.softmax(dim=-1)
|
378 |
+
flat_expert_indices = expert_indices.view(-1)
|
379 |
+
|
380 |
+
input_hidden_states = input_hidden_states.repeat_interleave(self.topk, dim=0)
|
381 |
+
expert_hidden_states = output_hidden_states.repeat_interleave(self.topk, dim=0)
|
382 |
+
for idx, expert in enumerate(self.experts.values()):
|
383 |
+
expert_hidden_states[flat_expert_indices == idx] += expert(input_hidden_states[flat_expert_indices == idx])
|
384 |
+
hidden_states = (expert_hidden_states.view(*expert_weights.shape, -1) * expert_weights.unsqueeze(-1)).sum(dim=1)
|
385 |
+
|
386 |
+
return hidden_states.view(*orig_shape), router_logits
|
387 |
+
|
388 |
+
|
389 |
+
class LlamaMLP(nn.Module):
|
390 |
+
def __init__(self, config):
|
391 |
+
super().__init__()
|
392 |
+
self.config = config
|
393 |
+
self.hidden_size = config.hidden_size
|
394 |
+
self.intermediate_size = config.intermediate_size
|
395 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
396 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
397 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
398 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
399 |
+
|
400 |
+
self.moe_adapter = CamelidaeGateAdapter(config)
|
401 |
+
|
402 |
+
def forward(self, x):
|
403 |
+
router_hidden_states = x
|
404 |
+
up_proj = self.act_fn(self.gate_proj(x)) * self.up_proj(x)
|
405 |
+
down_proj = self.down_proj(up_proj)
|
406 |
+
down_proj, router_logits = self.moe_adapter(down_proj, down_proj, router_hidden_states)
|
407 |
+
|
408 |
+
return down_proj, router_logits
|
409 |
+
|
410 |
+
|
411 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
412 |
+
"""
|
413 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
414 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
415 |
+
"""
|
416 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
417 |
+
if n_rep == 1:
|
418 |
+
return hidden_states
|
419 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(
|
420 |
+
batch, num_key_value_heads, n_rep, slen, head_dim
|
421 |
+
)
|
422 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
423 |
+
|
424 |
+
|
425 |
+
class LlamaAttention(nn.Module):
|
426 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
427 |
+
|
428 |
+
def __init__(self, config: CamelidaeConfig):
|
429 |
+
super().__init__()
|
430 |
+
self.config = config
|
431 |
+
self.hidden_size = config.hidden_size
|
432 |
+
self.num_heads = config.num_attention_heads
|
433 |
+
self.head_dim = self.hidden_size // self.num_heads
|
434 |
+
self.num_key_value_heads = config.num_key_value_heads
|
435 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
436 |
+
self.max_position_embeddings = config.max_position_embeddings
|
437 |
+
|
438 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
439 |
+
raise ValueError(
|
440 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
441 |
+
f" and `num_heads`: {self.num_heads})."
|
442 |
+
)
|
443 |
+
self.q_proj = nn.Linear(
|
444 |
+
self.hidden_size, self.num_heads * self.head_dim, bias=False
|
445 |
+
)
|
446 |
+
self.k_proj = nn.Linear(
|
447 |
+
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
|
448 |
+
)
|
449 |
+
self.v_proj = nn.Linear(
|
450 |
+
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
|
451 |
+
)
|
452 |
+
self.o_proj = nn.Linear(
|
453 |
+
self.num_heads * self.head_dim, self.hidden_size, bias=False
|
454 |
+
)
|
455 |
+
self._init_rope()
|
456 |
+
|
457 |
+
def _init_rope(self):
|
458 |
+
if self.config.rope_scaling is None:
|
459 |
+
self.rotary_emb = LlamaRotaryEmbedding(
|
460 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings
|
461 |
+
)
|
462 |
+
else:
|
463 |
+
scaling_type = self.config.rope_scaling["type"]
|
464 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
465 |
+
if scaling_type == "linear":
|
466 |
+
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
|
467 |
+
self.head_dim,
|
468 |
+
max_position_embeddings=self.max_position_embeddings,
|
469 |
+
scaling_factor=scaling_factor,
|
470 |
+
)
|
471 |
+
elif scaling_type == "dynamic":
|
472 |
+
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
|
473 |
+
self.head_dim,
|
474 |
+
max_position_embeddings=self.max_position_embeddings,
|
475 |
+
scaling_factor=scaling_factor,
|
476 |
+
)
|
477 |
+
else:
|
478 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
479 |
+
|
480 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
481 |
+
return (
|
482 |
+
tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
|
483 |
+
.transpose(1, 2)
|
484 |
+
.contiguous()
|
485 |
+
)
|
486 |
+
|
487 |
+
def forward(
|
488 |
+
self,
|
489 |
+
hidden_states: torch.Tensor,
|
490 |
+
attention_mask: Optional[torch.Tensor] = None,
|
491 |
+
position_ids: Optional[torch.LongTensor] = None,
|
492 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
493 |
+
output_attentions: bool = False,
|
494 |
+
use_cache: bool = False,
|
495 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
496 |
+
bsz, q_len, _ = hidden_states.size()
|
497 |
+
|
498 |
+
if self.config.pretraining_tp > 1:
|
499 |
+
key_value_slicing = (
|
500 |
+
self.num_key_value_heads * self.head_dim
|
501 |
+
) // self.config.pretraining_tp
|
502 |
+
query_slices = self.q_proj.weight.split(
|
503 |
+
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
504 |
+
)
|
505 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
506 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
507 |
+
|
508 |
+
query_states = [
|
509 |
+
F.linear(hidden_states, query_slices[i])
|
510 |
+
for i in range(self.config.pretraining_tp)
|
511 |
+
]
|
512 |
+
query_states = torch.cat(query_states, dim=-1)
|
513 |
+
|
514 |
+
key_states = [
|
515 |
+
F.linear(hidden_states, key_slices[i])
|
516 |
+
for i in range(self.config.pretraining_tp)
|
517 |
+
]
|
518 |
+
key_states = torch.cat(key_states, dim=-1)
|
519 |
+
|
520 |
+
value_states = [
|
521 |
+
F.linear(hidden_states, value_slices[i])
|
522 |
+
for i in range(self.config.pretraining_tp)
|
523 |
+
]
|
524 |
+
value_states = torch.cat(value_states, dim=-1)
|
525 |
+
|
526 |
+
else:
|
527 |
+
query_states = self.q_proj(hidden_states)
|
528 |
+
key_states = self.k_proj(hidden_states)
|
529 |
+
value_states = self.v_proj(hidden_states)
|
530 |
+
|
531 |
+
query_states = query_states.view(
|
532 |
+
bsz, q_len, self.num_heads, self.head_dim
|
533 |
+
).transpose(1, 2)
|
534 |
+
key_states = key_states.view(
|
535 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
536 |
+
).transpose(1, 2)
|
537 |
+
value_states = value_states.view(
|
538 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
539 |
+
).transpose(1, 2)
|
540 |
+
|
541 |
+
kv_seq_len = key_states.shape[-2]
|
542 |
+
if past_key_value is not None:
|
543 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
544 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
545 |
+
query_states, key_states = apply_rotary_pos_emb(
|
546 |
+
query_states, key_states, cos, sin, position_ids
|
547 |
+
)
|
548 |
+
|
549 |
+
if past_key_value is not None:
|
550 |
+
# reuse k, v, self_attention
|
551 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
552 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
553 |
+
|
554 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
555 |
+
|
556 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
557 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
558 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
559 |
+
|
560 |
+
attn_weights = torch.matmul(
|
561 |
+
query_states, key_states.transpose(2, 3)
|
562 |
+
) / math.sqrt(self.head_dim)
|
563 |
+
|
564 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
565 |
+
raise ValueError(
|
566 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
567 |
+
f" {attn_weights.size()}"
|
568 |
+
)
|
569 |
+
|
570 |
+
if attention_mask is not None:
|
571 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
572 |
+
raise ValueError(
|
573 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
574 |
+
)
|
575 |
+
attn_weights = attn_weights + attention_mask
|
576 |
+
|
577 |
+
# upcast attention to fp32
|
578 |
+
attn_weights = nn.functional.softmax(
|
579 |
+
attn_weights, dim=-1, dtype=torch.float32
|
580 |
+
).to(query_states.dtype)
|
581 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
582 |
+
|
583 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
584 |
+
raise ValueError(
|
585 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
586 |
+
f" {attn_output.size()}"
|
587 |
+
)
|
588 |
+
|
589 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
590 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
591 |
+
|
592 |
+
if self.config.pretraining_tp > 1:
|
593 |
+
attn_output = attn_output.split(
|
594 |
+
self.hidden_size // self.config.pretraining_tp, dim=2
|
595 |
+
)
|
596 |
+
o_proj_slices = self.o_proj.weight.split(
|
597 |
+
self.hidden_size // self.config.pretraining_tp, dim=1
|
598 |
+
)
|
599 |
+
attn_output = sum(
|
600 |
+
[
|
601 |
+
F.linear(attn_output[i], o_proj_slices[i])
|
602 |
+
for i in range(self.config.pretraining_tp)
|
603 |
+
]
|
604 |
+
)
|
605 |
+
else:
|
606 |
+
attn_output = self.o_proj(attn_output)
|
607 |
+
|
608 |
+
if not output_attentions:
|
609 |
+
attn_weights = None
|
610 |
+
|
611 |
+
return attn_output, attn_weights, past_key_value
|
612 |
+
|
613 |
+
|
614 |
+
class LlamaDecoderLayer(nn.Module):
|
615 |
+
def __init__(self, config: CamelidaeConfig):
|
616 |
+
super().__init__()
|
617 |
+
self.config = config
|
618 |
+
self.hidden_size = config.hidden_size
|
619 |
+
self.self_attn = LlamaAttention(config=config)
|
620 |
+
self.mlp = LlamaMLP(config)
|
621 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
622 |
+
self.post_attention_layernorm = LlamaRMSNorm(
|
623 |
+
config.hidden_size, eps=config.rms_norm_eps
|
624 |
+
)
|
625 |
+
|
626 |
+
def forward(
|
627 |
+
self,
|
628 |
+
hidden_states: torch.Tensor,
|
629 |
+
attention_mask: Optional[torch.Tensor] = None,
|
630 |
+
position_ids: Optional[torch.LongTensor] = None,
|
631 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
632 |
+
output_attentions: Optional[bool] = False,
|
633 |
+
output_router_logits: Optional[bool] = False,
|
634 |
+
use_cache: Optional[bool] = False,
|
635 |
+
) -> Tuple[
|
636 |
+
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
637 |
+
]:
|
638 |
+
"""
|
639 |
+
Args:
|
640 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
641 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
642 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
643 |
+
output_attentions (`bool`, *optional*):
|
644 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
645 |
+
returned tensors for more detail.
|
646 |
+
use_cache (`bool`, *optional*):
|
647 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
648 |
+
(see `past_key_values`).
|
649 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
650 |
+
"""
|
651 |
+
|
652 |
+
residual = hidden_states
|
653 |
+
|
654 |
+
hidden_states = self.input_layernorm(hidden_states)
|
655 |
+
# router_hidden_states = hidden_states
|
656 |
+
|
657 |
+
# Self Attention
|
658 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
659 |
+
hidden_states=hidden_states,
|
660 |
+
attention_mask=attention_mask,
|
661 |
+
position_ids=position_ids,
|
662 |
+
past_key_value=past_key_value,
|
663 |
+
output_attentions=output_attentions,
|
664 |
+
use_cache=use_cache,
|
665 |
+
)
|
666 |
+
hidden_states = residual + hidden_states
|
667 |
+
|
668 |
+
# Fully Connected
|
669 |
+
residual = hidden_states
|
670 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
671 |
+
hidden_states, router_logits = self.mlp(hidden_states)
|
672 |
+
hidden_states = residual + hidden_states
|
673 |
+
|
674 |
+
outputs = (hidden_states,)
|
675 |
+
|
676 |
+
if output_attentions:
|
677 |
+
outputs += (self_attn_weights,)
|
678 |
+
|
679 |
+
if use_cache:
|
680 |
+
outputs += (present_key_value,)
|
681 |
+
|
682 |
+
if output_router_logits:
|
683 |
+
outputs += (router_logits,)
|
684 |
+
|
685 |
+
return outputs
|
686 |
+
|
687 |
+
|
688 |
+
LLAMA_START_DOCSTRING = r"""
|
689 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
690 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
691 |
+
etc.)
|
692 |
+
|
693 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
694 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
695 |
+
and behavior.
|
696 |
+
|
697 |
+
Parameters:
|
698 |
+
config ([`CamelidaeConfig`]):
|
699 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
700 |
+
load the weights associated with the model, only the configuration. Check out the
|
701 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
702 |
+
"""
|
703 |
+
|
704 |
+
|
705 |
+
@add_start_docstrings(
|
706 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
707 |
+
LLAMA_START_DOCSTRING,
|
708 |
+
)
|
709 |
+
class LlamaPreTrainedModel(PreTrainedModel):
|
710 |
+
config_class = CamelidaeConfig
|
711 |
+
base_model_prefix = "model"
|
712 |
+
supports_gradient_checkpointing = True
|
713 |
+
_no_split_modules = ["LlamaDecoderLayer"]
|
714 |
+
_skip_keys_device_placement = "past_key_values"
|
715 |
+
|
716 |
+
def _init_weights(self, module):
|
717 |
+
std = self.config.initializer_range
|
718 |
+
if isinstance(module, nn.Linear):
|
719 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
720 |
+
if module.bias is not None:
|
721 |
+
module.bias.data.zero_()
|
722 |
+
elif isinstance(module, nn.Embedding):
|
723 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
724 |
+
if module.padding_idx is not None:
|
725 |
+
module.weight.data[module.padding_idx].zero_()
|
726 |
+
|
727 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
728 |
+
if isinstance(module, LlamaModel):
|
729 |
+
module.gradient_checkpointing = value
|
730 |
+
|
731 |
+
|
732 |
+
LLAMA_INPUTS_DOCSTRING = r"""
|
733 |
+
Args:
|
734 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
735 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
736 |
+
it.
|
737 |
+
|
738 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
739 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
740 |
+
|
741 |
+
[What are input IDs?](../glossary#input-ids)
|
742 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
743 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
744 |
+
|
745 |
+
- 1 for tokens that are **not masked**,
|
746 |
+
- 0 for tokens that are **masked**.
|
747 |
+
|
748 |
+
[What are attention masks?](../glossary#attention-mask)
|
749 |
+
|
750 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
751 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
752 |
+
|
753 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
754 |
+
`past_key_values`).
|
755 |
+
|
756 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
757 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
758 |
+
information on the default strategy.
|
759 |
+
|
760 |
+
- 1 indicates the head is **not masked**,
|
761 |
+
- 0 indicates the head is **masked**.
|
762 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
763 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
764 |
+
config.n_positions - 1]`.
|
765 |
+
|
766 |
+
[What are position IDs?](../glossary#position-ids)
|
767 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
768 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
769 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
770 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
771 |
+
|
772 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
773 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
774 |
+
|
775 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
776 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
777 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
778 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
779 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
780 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
781 |
+
model's internal embedding lookup matrix.
|
782 |
+
use_cache (`bool`, *optional*):
|
783 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
784 |
+
`past_key_values`).
|
785 |
+
output_attentions (`bool`, *optional*):
|
786 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
787 |
+
tensors for more detail.
|
788 |
+
output_hidden_states (`bool`, *optional*):
|
789 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
790 |
+
more detail.
|
791 |
+
output_router_logits (`bool`, *optional*):
|
792 |
+
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
|
793 |
+
should not be returned during inference.
|
794 |
+
return_dict (`bool`, *optional*):
|
795 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
796 |
+
"""
|
797 |
+
|
798 |
+
|
799 |
+
@add_start_docstrings(
|
800 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
801 |
+
LLAMA_START_DOCSTRING,
|
802 |
+
)
|
803 |
+
class LlamaModel(LlamaPreTrainedModel):
|
804 |
+
"""
|
805 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
806 |
+
|
807 |
+
Args:
|
808 |
+
config: CamelidaeConfig
|
809 |
+
"""
|
810 |
+
|
811 |
+
def __init__(self, config: CamelidaeConfig):
|
812 |
+
super().__init__(config)
|
813 |
+
self.padding_idx = config.pad_token_id
|
814 |
+
self.vocab_size = config.vocab_size
|
815 |
+
|
816 |
+
self.embed_tokens = nn.Embedding(
|
817 |
+
config.vocab_size, config.hidden_size, self.padding_idx
|
818 |
+
)
|
819 |
+
self.layers = nn.ModuleList(
|
820 |
+
[LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)]
|
821 |
+
)
|
822 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
823 |
+
|
824 |
+
self.gradient_checkpointing = False
|
825 |
+
# Initialize weights and apply final processing
|
826 |
+
self.post_init()
|
827 |
+
|
828 |
+
def get_input_embeddings(self):
|
829 |
+
return self.embed_tokens
|
830 |
+
|
831 |
+
def set_input_embeddings(self, value):
|
832 |
+
self.embed_tokens = value
|
833 |
+
|
834 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
835 |
+
def _prepare_decoder_attention_mask(
|
836 |
+
self, attention_mask, input_shape, inputs_embeds, past_key_values_length
|
837 |
+
):
|
838 |
+
# create causal mask
|
839 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
840 |
+
combined_attention_mask = None
|
841 |
+
if input_shape[-1] > 1:
|
842 |
+
combined_attention_mask = _make_causal_mask(
|
843 |
+
input_shape,
|
844 |
+
inputs_embeds.dtype,
|
845 |
+
device=inputs_embeds.device,
|
846 |
+
past_key_values_length=past_key_values_length,
|
847 |
+
)
|
848 |
+
|
849 |
+
if attention_mask is not None:
|
850 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
851 |
+
expanded_attn_mask = _expand_mask(
|
852 |
+
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
853 |
+
).to(inputs_embeds.device)
|
854 |
+
combined_attention_mask = (
|
855 |
+
expanded_attn_mask
|
856 |
+
if combined_attention_mask is None
|
857 |
+
else expanded_attn_mask + combined_attention_mask
|
858 |
+
)
|
859 |
+
|
860 |
+
return combined_attention_mask
|
861 |
+
|
862 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
863 |
+
def forward(
|
864 |
+
self,
|
865 |
+
input_ids: torch.LongTensor = None,
|
866 |
+
attention_mask: Optional[torch.Tensor] = None,
|
867 |
+
position_ids: Optional[torch.LongTensor] = None,
|
868 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
869 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
870 |
+
use_cache: Optional[bool] = None,
|
871 |
+
output_attentions: Optional[bool] = None,
|
872 |
+
output_hidden_states: Optional[bool] = None,
|
873 |
+
output_router_logits: Optional[bool] = None,
|
874 |
+
return_dict: Optional[bool] = None,
|
875 |
+
) -> Union[Tuple, MoEModelOutputWithPast]:
|
876 |
+
output_attentions = (
|
877 |
+
output_attentions
|
878 |
+
if output_attentions is not None
|
879 |
+
else self.config.output_attentions
|
880 |
+
)
|
881 |
+
output_hidden_states = (
|
882 |
+
output_hidden_states
|
883 |
+
if output_hidden_states is not None
|
884 |
+
else self.config.output_hidden_states
|
885 |
+
)
|
886 |
+
output_router_logits = (
|
887 |
+
output_router_logits
|
888 |
+
if output_router_logits is not None
|
889 |
+
else self.config.output_router_logits
|
890 |
+
)
|
891 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
892 |
+
|
893 |
+
return_dict = (
|
894 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
895 |
+
)
|
896 |
+
|
897 |
+
# retrieve input_ids and inputs_embeds
|
898 |
+
if input_ids is not None and inputs_embeds is not None:
|
899 |
+
raise ValueError(
|
900 |
+
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
|
901 |
+
)
|
902 |
+
elif input_ids is not None:
|
903 |
+
batch_size, seq_length = input_ids.shape
|
904 |
+
elif inputs_embeds is not None:
|
905 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
906 |
+
else:
|
907 |
+
raise ValueError(
|
908 |
+
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
909 |
+
)
|
910 |
+
|
911 |
+
seq_length_with_past = seq_length
|
912 |
+
past_key_values_length = 0
|
913 |
+
|
914 |
+
if past_key_values is not None:
|
915 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
916 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
917 |
+
|
918 |
+
if position_ids is None:
|
919 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
920 |
+
position_ids = torch.arange(
|
921 |
+
past_key_values_length,
|
922 |
+
seq_length + past_key_values_length,
|
923 |
+
dtype=torch.long,
|
924 |
+
device=device,
|
925 |
+
)
|
926 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
927 |
+
else:
|
928 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
929 |
+
|
930 |
+
if inputs_embeds is None:
|
931 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
932 |
+
# embed positions
|
933 |
+
if attention_mask is None:
|
934 |
+
attention_mask = torch.ones(
|
935 |
+
(batch_size, seq_length_with_past),
|
936 |
+
dtype=torch.bool,
|
937 |
+
device=inputs_embeds.device,
|
938 |
+
)
|
939 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
940 |
+
attention_mask,
|
941 |
+
(batch_size, seq_length),
|
942 |
+
inputs_embeds,
|
943 |
+
past_key_values_length,
|
944 |
+
)
|
945 |
+
|
946 |
+
hidden_states = inputs_embeds
|
947 |
+
|
948 |
+
if self.gradient_checkpointing and self.training:
|
949 |
+
if use_cache:
|
950 |
+
logger.warning_once(
|
951 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
952 |
+
)
|
953 |
+
use_cache = False
|
954 |
+
|
955 |
+
# decoder layers
|
956 |
+
all_hidden_states = () if output_hidden_states else None
|
957 |
+
all_self_attns = () if output_attentions else None
|
958 |
+
all_router_logits = () if output_router_logits else None
|
959 |
+
next_decoder_cache = () if use_cache else None
|
960 |
+
|
961 |
+
for idx, decoder_layer in enumerate(self.layers):
|
962 |
+
if output_hidden_states:
|
963 |
+
all_hidden_states += (hidden_states,)
|
964 |
+
|
965 |
+
past_key_value = (
|
966 |
+
past_key_values[idx] if past_key_values is not None else None
|
967 |
+
)
|
968 |
+
|
969 |
+
if self.gradient_checkpointing and self.training:
|
970 |
+
|
971 |
+
def create_custom_forward(module):
|
972 |
+
def custom_forward(*inputs):
|
973 |
+
# None for past_key_value
|
974 |
+
return module(
|
975 |
+
*inputs, output_attentions, output_router_logits, None
|
976 |
+
)
|
977 |
+
|
978 |
+
return custom_forward
|
979 |
+
|
980 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
981 |
+
create_custom_forward(decoder_layer),
|
982 |
+
hidden_states,
|
983 |
+
attention_mask,
|
984 |
+
position_ids,
|
985 |
+
None,
|
986 |
+
)
|
987 |
+
else:
|
988 |
+
layer_outputs = decoder_layer(
|
989 |
+
hidden_states,
|
990 |
+
attention_mask=attention_mask,
|
991 |
+
position_ids=position_ids,
|
992 |
+
past_key_value=past_key_value,
|
993 |
+
output_attentions=output_attentions,
|
994 |
+
output_router_logits=output_router_logits,
|
995 |
+
use_cache=use_cache,
|
996 |
+
)
|
997 |
+
|
998 |
+
hidden_states = layer_outputs[0]
|
999 |
+
|
1000 |
+
if use_cache:
|
1001 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
1002 |
+
|
1003 |
+
if output_attentions:
|
1004 |
+
all_self_attns += (layer_outputs[1],)
|
1005 |
+
|
1006 |
+
if output_router_logits:
|
1007 |
+
all_router_logits += (layer_outputs[-1],)
|
1008 |
+
|
1009 |
+
hidden_states = self.norm(hidden_states)
|
1010 |
+
|
1011 |
+
# add hidden states from the last decoder layer
|
1012 |
+
if output_hidden_states:
|
1013 |
+
all_hidden_states += (hidden_states,)
|
1014 |
+
|
1015 |
+
next_cache = next_decoder_cache if use_cache else None
|
1016 |
+
if not return_dict:
|
1017 |
+
return tuple(
|
1018 |
+
v
|
1019 |
+
for v in [
|
1020 |
+
hidden_states,
|
1021 |
+
next_cache,
|
1022 |
+
all_hidden_states,
|
1023 |
+
all_self_attns,
|
1024 |
+
all_router_logits
|
1025 |
+
]
|
1026 |
+
if v is not None
|
1027 |
+
)
|
1028 |
+
return MoEModelOutputWithPast(
|
1029 |
+
last_hidden_state=hidden_states,
|
1030 |
+
past_key_values=next_cache,
|
1031 |
+
hidden_states=all_hidden_states,
|
1032 |
+
attentions=all_self_attns,
|
1033 |
+
router_logits=all_router_logits,
|
1034 |
+
)
|
1035 |
+
|
1036 |
+
|
1037 |
+
class LlamaForCausalLM(LlamaPreTrainedModel):
|
1038 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1039 |
+
|
1040 |
+
def __init__(self, config):
|
1041 |
+
super().__init__(config)
|
1042 |
+
self.config = config
|
1043 |
+
self.model = LlamaModel(config)
|
1044 |
+
self.vocab_size = config.vocab_size
|
1045 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1046 |
+
|
1047 |
+
# Initialize weights and apply final processing
|
1048 |
+
self.post_init()
|
1049 |
+
|
1050 |
+
def get_input_embeddings(self):
|
1051 |
+
return self.model.embed_tokens
|
1052 |
+
|
1053 |
+
def set_input_embeddings(self, value):
|
1054 |
+
self.model.embed_tokens = value
|
1055 |
+
|
1056 |
+
def get_output_embeddings(self):
|
1057 |
+
return self.lm_head
|
1058 |
+
|
1059 |
+
def set_output_embeddings(self, new_embeddings):
|
1060 |
+
self.lm_head = new_embeddings
|
1061 |
+
|
1062 |
+
def set_decoder(self, decoder):
|
1063 |
+
self.model = decoder
|
1064 |
+
|
1065 |
+
def get_decoder(self):
|
1066 |
+
return self.model
|
1067 |
+
|
1068 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
1069 |
+
@replace_return_docstrings(
|
1070 |
+
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
1071 |
+
)
|
1072 |
+
def forward(
|
1073 |
+
self,
|
1074 |
+
input_ids: torch.LongTensor = None,
|
1075 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1076 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1077 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1078 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1079 |
+
labels: Optional[torch.LongTensor] = None,
|
1080 |
+
use_cache: Optional[bool] = None,
|
1081 |
+
output_attentions: Optional[bool] = None,
|
1082 |
+
output_hidden_states: Optional[bool] = None,
|
1083 |
+
output_router_logits: Optional[bool] = None,
|
1084 |
+
return_dict: Optional[bool] = None,
|
1085 |
+
) -> Union[Tuple, MoECausalLMOutputWithPast]:
|
1086 |
+
r"""
|
1087 |
+
Args:
|
1088 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1089 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1090 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1091 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1092 |
+
|
1093 |
+
Returns:
|
1094 |
+
|
1095 |
+
Example:
|
1096 |
+
|
1097 |
+
```python
|
1098 |
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
1099 |
+
|
1100 |
+
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1101 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1102 |
+
|
1103 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1104 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1105 |
+
|
1106 |
+
>>> # Generate
|
1107 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1108 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1109 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1110 |
+
```"""
|
1111 |
+
|
1112 |
+
output_attentions = (
|
1113 |
+
output_attentions
|
1114 |
+
if output_attentions is not None
|
1115 |
+
else self.config.output_attentions
|
1116 |
+
)
|
1117 |
+
output_hidden_states = (
|
1118 |
+
output_hidden_states
|
1119 |
+
if output_hidden_states is not None
|
1120 |
+
else self.config.output_hidden_states
|
1121 |
+
)
|
1122 |
+
output_router_logits = (
|
1123 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
1124 |
+
)
|
1125 |
+
return_dict = (
|
1126 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1127 |
+
)
|
1128 |
+
|
1129 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1130 |
+
outputs = self.model(
|
1131 |
+
input_ids=input_ids,
|
1132 |
+
attention_mask=attention_mask,
|
1133 |
+
position_ids=position_ids,
|
1134 |
+
past_key_values=past_key_values,
|
1135 |
+
inputs_embeds=inputs_embeds,
|
1136 |
+
use_cache=use_cache,
|
1137 |
+
output_attentions=output_attentions,
|
1138 |
+
output_hidden_states=output_hidden_states,
|
1139 |
+
output_router_logits=output_router_logits,
|
1140 |
+
return_dict=return_dict,
|
1141 |
+
)
|
1142 |
+
|
1143 |
+
hidden_states = outputs[0]
|
1144 |
+
if self.config.pretraining_tp > 1:
|
1145 |
+
lm_head_slices = self.lm_head.weight.split(
|
1146 |
+
self.vocab_size // self.config.pretraining_tp, dim=0
|
1147 |
+
)
|
1148 |
+
logits = [
|
1149 |
+
F.linear(hidden_states, lm_head_slices[i])
|
1150 |
+
for i in range(self.config.pretraining_tp)
|
1151 |
+
]
|
1152 |
+
logits = torch.cat(logits, dim=-1)
|
1153 |
+
else:
|
1154 |
+
logits = self.lm_head(hidden_states)
|
1155 |
+
logits = logits.float()
|
1156 |
+
|
1157 |
+
loss = None
|
1158 |
+
|
1159 |
+
if labels is not None:
|
1160 |
+
# Shift so that tokens < n predict n
|
1161 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1162 |
+
shift_labels = labels[..., 1:].contiguous()
|
1163 |
+
# Flatten the tokens
|
1164 |
+
loss_fct = CrossEntropyLoss()
|
1165 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1166 |
+
shift_labels = shift_labels.view(-1)
|
1167 |
+
# Enable model parallelism
|
1168 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1169 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1170 |
+
|
1171 |
+
aux_loss = None
|
1172 |
+
if output_router_logits:
|
1173 |
+
aux_loss = load_balancing_loss_func(
|
1174 |
+
outputs.router_logits if return_dict else outputs[-1], self.config.num_experts, self.config.topk
|
1175 |
+
)
|
1176 |
+
if labels is not None:
|
1177 |
+
loss += 0.01 * aux_loss
|
1178 |
+
|
1179 |
+
if not return_dict:
|
1180 |
+
output = (logits,) + outputs[1:]
|
1181 |
+
if output_router_logits:
|
1182 |
+
output = (aux_loss,) + output
|
1183 |
+
return (loss,) + output if loss is not None else output
|
1184 |
+
|
1185 |
+
return MoECausalLMOutputWithPast(
|
1186 |
+
loss=loss,
|
1187 |
+
aux_loss=aux_loss,
|
1188 |
+
logits=logits,
|
1189 |
+
past_key_values=outputs.past_key_values,
|
1190 |
+
hidden_states=outputs.hidden_states,
|
1191 |
+
attentions=outputs.attentions,
|
1192 |
+
router_logits=outputs.router_logits,
|
1193 |
+
)
|
1194 |
+
|
1195 |
+
def prepare_inputs_for_generation(
|
1196 |
+
self,
|
1197 |
+
input_ids,
|
1198 |
+
past_key_values=None,
|
1199 |
+
attention_mask=None,
|
1200 |
+
inputs_embeds=None,
|
1201 |
+
**kwargs,
|
1202 |
+
):
|
1203 |
+
if past_key_values:
|
1204 |
+
input_ids = input_ids[:, -1:]
|
1205 |
+
|
1206 |
+
position_ids = kwargs.get("position_ids", None)
|
1207 |
+
if attention_mask is not None and position_ids is None:
|
1208 |
+
# create position_ids on the fly for batch generation
|
1209 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1210 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1211 |
+
if past_key_values:
|
1212 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
1213 |
+
|
1214 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1215 |
+
if inputs_embeds is not None and past_key_values is None:
|
1216 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1217 |
+
else:
|
1218 |
+
model_inputs = {"input_ids": input_ids}
|
1219 |
+
|
1220 |
+
model_inputs.update(
|
1221 |
+
{
|
1222 |
+
"position_ids": position_ids,
|
1223 |
+
"past_key_values": past_key_values,
|
1224 |
+
"use_cache": kwargs.get("use_cache"),
|
1225 |
+
"attention_mask": attention_mask,
|
1226 |
+
}
|
1227 |
+
)
|
1228 |
+
return model_inputs
|
1229 |
+
|
1230 |
+
@staticmethod
|
1231 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1232 |
+
reordered_past = ()
|
1233 |
+
for layer_past in past_key_values:
|
1234 |
+
reordered_past += (
|
1235 |
+
tuple(
|
1236 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
1237 |
+
for past_state in layer_past
|
1238 |
+
),
|
1239 |
+
)
|
1240 |
+
return reordered_past
|
smash_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"api_key": null,
|
3 |
+
"verify_url": "http://johnrachwan.pythonanywhere.com",
|
4 |
+
"smash_config": {
|
5 |
+
"pruners": "None",
|
6 |
+
"pruning_ratio": 0.0,
|
7 |
+
"factorizers": "None",
|
8 |
+
"quantizers": "['llm-int8']",
|
9 |
+
"weight_quantization_bits": 4,
|
10 |
+
"output_deviation": 0.005,
|
11 |
+
"compilers": "None",
|
12 |
+
"static_batch": true,
|
13 |
+
"static_shape": true,
|
14 |
+
"controlnet": "None",
|
15 |
+
"unet_dim": 4,
|
16 |
+
"device": "cuda",
|
17 |
+
"cache_dir": "/ceph/hdd/staff/charpent/.cache/models1trx2z9_",
|
18 |
+
"batch_size": 1,
|
19 |
+
"model_name": "hywu/Camelidae-8x7B",
|
20 |
+
"task": "text_text_generation",
|
21 |
+
"max_batch_size": 1,
|
22 |
+
"qtype_weight": "torch.qint8",
|
23 |
+
"qtype_activation": "torch.quint8",
|
24 |
+
"qobserver": "<class 'torch.ao.quantization.observer.MinMaxObserver'>",
|
25 |
+
"qscheme": "torch.per_tensor_symmetric",
|
26 |
+
"qconfig": "x86",
|
27 |
+
"group_size": 128,
|
28 |
+
"damp_percent": 0.1,
|
29 |
+
"save_load_fn": "bitsandbytes"
|
30 |
+
}
|
31 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"unk_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": true,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"clean_up_tokenization_spaces": false,
|
33 |
+
"eos_token": "</s>",
|
34 |
+
"legacy": false,
|
35 |
+
"model_max_length": 1000000000000000019884624838656,
|
36 |
+
"pad_token": null,
|
37 |
+
"padding_side": "right",
|
38 |
+
"sp_model_kwargs": {},
|
39 |
+
"spaces_between_special_tokens": false,
|
40 |
+
"tokenizer_class": "LlamaTokenizer",
|
41 |
+
"unk_token": "<unk>",
|
42 |
+
"use_default_system_prompt": true
|
43 |
+
}
|