Upload folder using huggingface_hub (#1)
Browse files- 28b029cda634cec59f24a1b65dc38bf0b3fc605a372126420c73254236eb6918 (650c5ad91c9412a05f21547297f143dc5cf9cf8d)
- ec80672b5fa7ee0800138240045da3de432df905c6092cd133b7c130edfe0ad1 (f313b97205ac762407c7f6b2437157997a5c5c90)
- README.md +81 -0
- config.json +50 -0
- configuration_mistral.py +181 -0
- generation_config.json +6 -0
- model.safetensors +3 -0
- modeling_mistral_yarn.py +1489 -0
- plots.png +0 -0
- smash_config.json +27 -0
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: pruna-engine
|
3 |
+
thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
|
4 |
+
metrics:
|
5 |
+
- memory_disk
|
6 |
+
- memory_inference
|
7 |
+
- inference_latency
|
8 |
+
- inference_throughput
|
9 |
+
- inference_CO2_emissions
|
10 |
+
- inference_energy_consumption
|
11 |
+
---
|
12 |
+
<!-- header start -->
|
13 |
+
<!-- 200823 -->
|
14 |
+
<div style="width: auto; margin-left: auto; margin-right: auto">
|
15 |
+
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
|
16 |
+
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
17 |
+
</a>
|
18 |
+
</div>
|
19 |
+
<!-- header end -->
|
20 |
+
|
21 |
+
[![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI)
|
22 |
+
[![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI)
|
23 |
+
[![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
|
24 |
+
[![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/CP4VSgck)
|
25 |
+
|
26 |
+
# Simply make AI models cheaper, smaller, faster, and greener!
|
27 |
+
|
28 |
+
- Give a thumbs up if you like this model!
|
29 |
+
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
|
30 |
+
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
|
31 |
+
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
|
32 |
+
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
|
33 |
+
|
34 |
+
## Results
|
35 |
+
|
36 |
+
![image info](./plots.png)
|
37 |
+
|
38 |
+
**Frequently Asked Questions**
|
39 |
+
- ***How does the compression work?*** The model is compressed with llm-int8.
|
40 |
+
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
|
41 |
+
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
|
42 |
+
- ***What is the model format?*** We use safetensors.
|
43 |
+
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
|
44 |
+
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
|
45 |
+
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
|
46 |
+
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
|
47 |
+
|
48 |
+
## Setup
|
49 |
+
|
50 |
+
You can run the smashed model with these steps:
|
51 |
+
|
52 |
+
0. Check requirements from the original repo NousResearch/Yarn-Mistral-7b-128k installed. In particular, check python, cuda, and transformers versions.
|
53 |
+
1. Make sure that you have installed quantization related packages.
|
54 |
+
```bash
|
55 |
+
pip install transformers accelerate bitsandbytes>0.37.0
|
56 |
+
```
|
57 |
+
2. Load & run the model.
|
58 |
+
```python
|
59 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
60 |
+
|
61 |
+
model = AutoModelForCausalLM.from_pretrained("PrunaAI/NousResearch-Yarn-Mistral-7b-128k-bnb-4bit-smashed",
|
62 |
+
trust_remote_code=True)
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained("NousResearch/Yarn-Mistral-7b-128k")
|
64 |
+
|
65 |
+
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
|
66 |
+
|
67 |
+
outputs = model.generate(input_ids, max_new_tokens=216)
|
68 |
+
```
|
69 |
+
|
70 |
+
## Configurations
|
71 |
+
|
72 |
+
The configuration info are in `smash_config.json`.
|
73 |
+
|
74 |
+
## Credits & License
|
75 |
+
|
76 |
+
The license of the smashed model follows the license of the original model. Please check the license of the original model NousResearch/Yarn-Mistral-7b-128k before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
|
77 |
+
|
78 |
+
## Want to compress other models?
|
79 |
+
|
80 |
+
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
|
81 |
+
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
|
config.json
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/tmp/tmpvd_mnysv",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_mistral.MistralConfig",
|
8 |
+
"AutoModelForCausalLM": "modeling_mistral_yarn.MistralForCausalLM"
|
9 |
+
},
|
10 |
+
"bos_token_id": 1,
|
11 |
+
"eos_token_id": 2,
|
12 |
+
"hidden_act": "silu",
|
13 |
+
"hidden_size": 4096,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 14336,
|
16 |
+
"max_position_embeddings": 32768,
|
17 |
+
"max_sequence_length": 131072,
|
18 |
+
"model_type": "mistral",
|
19 |
+
"num_attention_heads": 32,
|
20 |
+
"num_hidden_layers": 32,
|
21 |
+
"num_key_value_heads": 8,
|
22 |
+
"quantization_config": {
|
23 |
+
"bnb_4bit_compute_dtype": "bfloat16",
|
24 |
+
"bnb_4bit_quant_type": "fp4",
|
25 |
+
"bnb_4bit_use_double_quant": true,
|
26 |
+
"llm_int8_enable_fp32_cpu_offload": false,
|
27 |
+
"llm_int8_has_fp16_weight": false,
|
28 |
+
"llm_int8_skip_modules": [
|
29 |
+
"lm_head"
|
30 |
+
],
|
31 |
+
"llm_int8_threshold": 6.0,
|
32 |
+
"load_in_4bit": true,
|
33 |
+
"load_in_8bit": false,
|
34 |
+
"quant_method": "bitsandbytes"
|
35 |
+
},
|
36 |
+
"rms_norm_eps": 1e-05,
|
37 |
+
"rope_scaling": {
|
38 |
+
"factor": 16.0,
|
39 |
+
"finetuned": true,
|
40 |
+
"original_max_position_embeddings": 8192,
|
41 |
+
"type": "yarn"
|
42 |
+
},
|
43 |
+
"rope_theta": 10000.0,
|
44 |
+
"sliding_window": 131072,
|
45 |
+
"tie_word_embeddings": false,
|
46 |
+
"torch_dtype": "float16",
|
47 |
+
"transformers_version": "4.37.1",
|
48 |
+
"use_cache": true,
|
49 |
+
"vocab_size": 32000
|
50 |
+
}
|
configuration_mistral.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Mistral model configuration"""
|
16 |
+
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
24 |
+
"mistralai/Mistral-7B-v0.1": "https://huggingface.co/mistralai/Mistral-7B-v0.1/resolve/main/config.json",
|
25 |
+
"mistralai/Mistral-7B-Instruct-v0.1": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/resolve/main/config.json",
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
class MistralConfig(PretrainedConfig):
|
30 |
+
r"""
|
31 |
+
This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an
|
32 |
+
Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
33 |
+
with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1.
|
34 |
+
|
35 |
+
[mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
36 |
+
[mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
|
37 |
+
|
38 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
39 |
+
documentation from [`PretrainedConfig`] for more information.
|
40 |
+
|
41 |
+
|
42 |
+
Args:
|
43 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
44 |
+
Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the
|
45 |
+
`inputs_ids` passed when calling [`MistralModel`]
|
46 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
47 |
+
Dimension of the hidden representations.
|
48 |
+
intermediate_size (`int`, *optional*, defaults to 14336):
|
49 |
+
Dimension of the MLP representations.
|
50 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
51 |
+
Number of hidden layers in the Transformer encoder.
|
52 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
53 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
54 |
+
num_key_value_heads (`int`, *optional*, defaults to 8):
|
55 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
56 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
57 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
58 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
59 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
60 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
|
61 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
62 |
+
The non-linear activation function (function or string) in the decoder.
|
63 |
+
max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
|
64 |
+
The maximum sequence length that this model might ever be used with. Mistral's sliding window attention
|
65 |
+
allows sequence of up to 4096*32 tokens.
|
66 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
67 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
68 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
69 |
+
The epsilon used by the rms normalization layers.
|
70 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
71 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
72 |
+
relevant if `config.is_decoder=True`.
|
73 |
+
pad_token_id (`int`, *optional*):
|
74 |
+
The id of the padding token.
|
75 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
76 |
+
The id of the "beginning-of-sequence" token.
|
77 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
78 |
+
The id of the "end-of-sequence" token.
|
79 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
80 |
+
Whether the model's input and output word embeddings should be tied.
|
81 |
+
rope_scaling (`Dict`, *optional*):
|
82 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports three scaling
|
83 |
+
strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
|
84 |
+
is `{"type": strategy name, "factor": scaling factor}`.
|
85 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
86 |
+
The base period of the RoPE embeddings.
|
87 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
88 |
+
Sliding window attention window size. If not specified, will default to `4096`.
|
89 |
+
|
90 |
+
|
91 |
+
```python
|
92 |
+
>>> from transformers import MistralModel, MistralConfig
|
93 |
+
|
94 |
+
>>> # Initializing a Mistral 7B style configuration
|
95 |
+
>>> configuration = MistralConfig()
|
96 |
+
|
97 |
+
>>> # Initializing a model from the Mistral 7B style configuration
|
98 |
+
>>> model = MistralModel(configuration)
|
99 |
+
|
100 |
+
>>> # Accessing the model configuration
|
101 |
+
>>> configuration = model.config
|
102 |
+
```"""
|
103 |
+
|
104 |
+
model_type = "mistral"
|
105 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
106 |
+
|
107 |
+
def __init__(
|
108 |
+
self,
|
109 |
+
vocab_size=32000,
|
110 |
+
hidden_size=4096,
|
111 |
+
intermediate_size=14336,
|
112 |
+
num_hidden_layers=32,
|
113 |
+
num_attention_heads=32,
|
114 |
+
num_key_value_heads=8,
|
115 |
+
hidden_act="silu",
|
116 |
+
max_position_embeddings=4096 * 32,
|
117 |
+
initializer_range=0.02,
|
118 |
+
rms_norm_eps=1e-6,
|
119 |
+
use_cache=True,
|
120 |
+
pad_token_id=None,
|
121 |
+
bos_token_id=1,
|
122 |
+
eos_token_id=2,
|
123 |
+
tie_word_embeddings=False,
|
124 |
+
rope_scaling=None,
|
125 |
+
rope_theta=10000.0,
|
126 |
+
sliding_window=4096,
|
127 |
+
**kwargs,
|
128 |
+
):
|
129 |
+
self.vocab_size = vocab_size
|
130 |
+
self.max_position_embeddings = max_position_embeddings
|
131 |
+
self.hidden_size = hidden_size
|
132 |
+
self.intermediate_size = intermediate_size
|
133 |
+
self.num_hidden_layers = num_hidden_layers
|
134 |
+
self.num_attention_heads = num_attention_heads
|
135 |
+
self.sliding_window = sliding_window
|
136 |
+
|
137 |
+
# for backward compatibility
|
138 |
+
if num_key_value_heads is None:
|
139 |
+
num_key_value_heads = num_attention_heads
|
140 |
+
|
141 |
+
self.num_key_value_heads = num_key_value_heads
|
142 |
+
self.hidden_act = hidden_act
|
143 |
+
self.initializer_range = initializer_range
|
144 |
+
self.rms_norm_eps = rms_norm_eps
|
145 |
+
self.use_cache = use_cache
|
146 |
+
self.rope_scaling = rope_scaling
|
147 |
+
self._rope_scaling_validation()
|
148 |
+
self.rope_theta = rope_theta
|
149 |
+
|
150 |
+
super().__init__(
|
151 |
+
pad_token_id=pad_token_id,
|
152 |
+
bos_token_id=bos_token_id,
|
153 |
+
eos_token_id=eos_token_id,
|
154 |
+
tie_word_embeddings=tie_word_embeddings,
|
155 |
+
**kwargs,
|
156 |
+
)
|
157 |
+
|
158 |
+
def _rope_scaling_validation(self):
|
159 |
+
"""
|
160 |
+
Validate the `rope_scaling` configuration.
|
161 |
+
"""
|
162 |
+
if self.rope_scaling is None:
|
163 |
+
return
|
164 |
+
|
165 |
+
if not isinstance(self.rope_scaling, dict):
|
166 |
+
raise ValueError(
|
167 |
+
"`rope_scaling` must be a dictionary, "
|
168 |
+
f"got {self.rope_scaling}"
|
169 |
+
)
|
170 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
171 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
172 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic", "yarn", "dynamic-yarn"]:
|
173 |
+
raise ValueError(
|
174 |
+
f"`rope_scaling`'s name field must be one of ['linear', 'dynamic', 'yarn', 'dynamic-yarn'], got {rope_scaling_type}"
|
175 |
+
)
|
176 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
177 |
+
raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
|
178 |
+
if rope_scaling_type == "yarn" or rope_scaling_type == "dynamic-yarn":
|
179 |
+
original_max_position_embeddings = self.rope_scaling.get("original_max_position_embeddings", None)
|
180 |
+
if original_max_position_embeddings is None or not isinstance(original_max_position_embeddings, int):
|
181 |
+
raise ValueError(f"`rope_scaling.original_max_position_embeddings` must be set to an int when using yarn, and dynamic-yarn")
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.37.1"
|
6 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ddf8f05a475196ff657b79923aec6a6e91bb5909c8ef6dc5c87d570e3baa81e1
|
3 |
+
size 4125687618
|
modeling_mistral_yarn.py
ADDED
@@ -0,0 +1,1489 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch Mistral model."""
|
21 |
+
import inspect
|
22 |
+
import math
|
23 |
+
from typing import List, Optional, Tuple, Union
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torch.nn.functional as F
|
27 |
+
import torch.utils.checkpoint
|
28 |
+
from torch import nn
|
29 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
30 |
+
|
31 |
+
from transformers.activations import ACT2FN
|
32 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
33 |
+
from transformers.modeling_utils import PreTrainedModel
|
34 |
+
from transformers.utils import (
|
35 |
+
add_start_docstrings,
|
36 |
+
add_start_docstrings_to_model_forward,
|
37 |
+
is_flash_attn_2_available,
|
38 |
+
logging,
|
39 |
+
replace_return_docstrings,
|
40 |
+
)
|
41 |
+
from .configuration_mistral import MistralConfig
|
42 |
+
|
43 |
+
|
44 |
+
if is_flash_attn_2_available():
|
45 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
46 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
47 |
+
|
48 |
+
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
49 |
+
|
50 |
+
|
51 |
+
logger = logging.get_logger(__name__)
|
52 |
+
|
53 |
+
_CONFIG_FOR_DOC = "MistralConfig"
|
54 |
+
|
55 |
+
|
56 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
57 |
+
def _get_unpad_data(padding_mask):
|
58 |
+
seqlens_in_batch = padding_mask.sum(dim=-1, dtype=torch.int32)
|
59 |
+
indices = torch.nonzero(padding_mask.flatten(), as_tuple=False).flatten()
|
60 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
61 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
62 |
+
return (
|
63 |
+
indices,
|
64 |
+
cu_seqlens,
|
65 |
+
max_seqlen_in_batch,
|
66 |
+
)
|
67 |
+
|
68 |
+
|
69 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
70 |
+
def _make_causal_mask(
|
71 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
72 |
+
):
|
73 |
+
"""
|
74 |
+
Make causal mask used for bi-directional self-attention.
|
75 |
+
"""
|
76 |
+
bsz, tgt_len = input_ids_shape
|
77 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
78 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
79 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
80 |
+
mask = mask.to(dtype)
|
81 |
+
|
82 |
+
if past_key_values_length > 0:
|
83 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
84 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
85 |
+
|
86 |
+
def _make_sliding_window_causal_mask(
|
87 |
+
input_ids_shape: torch.Size,
|
88 |
+
dtype: torch.dtype,
|
89 |
+
device: torch.device,
|
90 |
+
past_key_values_length: int = 0,
|
91 |
+
sliding_window: int = 4096,
|
92 |
+
):
|
93 |
+
"""
|
94 |
+
Make causal mask used for sliding window attention
|
95 |
+
"""
|
96 |
+
bsz, tgt_len = input_ids_shape
|
97 |
+
|
98 |
+
tensor = torch.full(
|
99 |
+
(tgt_len, tgt_len),
|
100 |
+
fill_value=1,
|
101 |
+
device=device,
|
102 |
+
)
|
103 |
+
mask = torch.tril(tensor, diagonal=0)
|
104 |
+
# make the mask banded to account for sliding window
|
105 |
+
mask = torch.triu(mask, diagonal=-sliding_window)
|
106 |
+
mask = torch.log(mask).to(dtype)
|
107 |
+
|
108 |
+
if past_key_values_length > 0:
|
109 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
110 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
111 |
+
|
112 |
+
|
113 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
114 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
115 |
+
"""
|
116 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
117 |
+
"""
|
118 |
+
bsz, src_len = mask.size()
|
119 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
120 |
+
|
121 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
122 |
+
|
123 |
+
inverted_mask = 1.0 - expanded_mask
|
124 |
+
|
125 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
126 |
+
|
127 |
+
# Inverse dim formula to find dim based on number of rotations
|
128 |
+
def _yarn_find_correction_dim(num_rotations, dim, base=10000, max_position_embeddings=2048):
|
129 |
+
return (dim * math.log(max_position_embeddings/(num_rotations * 2 * math.pi)))/(2 * math.log(base))
|
130 |
+
|
131 |
+
# Find dim range bounds based on rotations
|
132 |
+
def _yarn_find_correction_range(low_rot, high_rot, dim, base=10000, max_position_embeddings=2048):
|
133 |
+
low = math.floor(_yarn_find_correction_dim(
|
134 |
+
low_rot, dim, base, max_position_embeddings))
|
135 |
+
high = math.ceil(_yarn_find_correction_dim(
|
136 |
+
high_rot, dim, base, max_position_embeddings))
|
137 |
+
return max(low, 0), min(high, dim-1) # Clamp values just in case
|
138 |
+
|
139 |
+
def _yarn_linear_ramp_mask(min, max, dim):
|
140 |
+
if min == max:
|
141 |
+
max += 0.001 # Prevent singularity
|
142 |
+
|
143 |
+
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
|
144 |
+
ramp_func = torch.clamp(linear_func, 0, 1)
|
145 |
+
return ramp_func
|
146 |
+
|
147 |
+
def _yarn_get_mscale(scale=1):
|
148 |
+
if scale <= 1:
|
149 |
+
return 1.0
|
150 |
+
return 0.07 * math.log(scale) + 1.0
|
151 |
+
|
152 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mistral
|
153 |
+
class MistralRMSNorm(nn.Module):
|
154 |
+
def __init__(self, hidden_size, eps=1e-6):
|
155 |
+
"""
|
156 |
+
MistralRMSNorm is equivalent to T5LayerNorm
|
157 |
+
"""
|
158 |
+
super().__init__()
|
159 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
160 |
+
self.variance_epsilon = eps
|
161 |
+
|
162 |
+
def forward(self, hidden_states):
|
163 |
+
input_dtype = hidden_states.dtype
|
164 |
+
hidden_states = hidden_states.to(torch.float32)
|
165 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
166 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
167 |
+
return self.weight * hidden_states.to(input_dtype)
|
168 |
+
|
169 |
+
|
170 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Mistral
|
171 |
+
class MistralRotaryEmbedding(nn.Module):
|
172 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
173 |
+
super().__init__()
|
174 |
+
|
175 |
+
self.dim = dim
|
176 |
+
self.max_position_embeddings = max_position_embeddings
|
177 |
+
self.base = base
|
178 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
179 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
180 |
+
|
181 |
+
# Build here to make `torch.jit.trace` work.
|
182 |
+
self._set_cos_sin_cache(
|
183 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
184 |
+
)
|
185 |
+
|
186 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
187 |
+
self.max_seq_len_cached = seq_len
|
188 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
189 |
+
|
190 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
191 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
192 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
193 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
194 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
195 |
+
|
196 |
+
def forward(self, x, seq_len=None):
|
197 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
198 |
+
if seq_len > self.max_seq_len_cached:
|
199 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
200 |
+
|
201 |
+
return (
|
202 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
203 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
204 |
+
)
|
205 |
+
|
206 |
+
class MistralLinearScalingRotaryEmbedding(MistralRotaryEmbedding):
|
207 |
+
"""MistralRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
208 |
+
|
209 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
210 |
+
self.scaling_factor = scaling_factor
|
211 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
212 |
+
|
213 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
214 |
+
self.max_seq_len_cached = seq_len
|
215 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
216 |
+
t = t / self.scaling_factor
|
217 |
+
|
218 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
219 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
220 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
221 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
222 |
+
self.register_buffer("sin_cached", emb.cos().to(dtype), persistent=False)
|
223 |
+
|
224 |
+
|
225 |
+
class MistralDynamicNTKScalingRotaryEmbedding(MistralRotaryEmbedding):
|
226 |
+
"""MistralRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
227 |
+
|
228 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
229 |
+
self.scaling_factor = scaling_factor
|
230 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
231 |
+
|
232 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
233 |
+
self.max_seq_len_cached = seq_len
|
234 |
+
|
235 |
+
if seq_len > self.max_position_embeddings:
|
236 |
+
base = self.base * (
|
237 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
238 |
+
) ** (self.dim / (self.dim - 2))
|
239 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
240 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
241 |
+
|
242 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
243 |
+
|
244 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
245 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
246 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
247 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
248 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
249 |
+
|
250 |
+
|
251 |
+
class MistralYaRNScaledRotaryEmbedding(torch.nn.Module):
|
252 |
+
"""MistralRotaryEmbedding extended with YaRN. See: https://arxiv.org/abs/2309.00071"""
|
253 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, scale=1, original_max_position_embeddings=2048,
|
254 |
+
extrapolation_factor=1, attn_factor=1, beta_fast=128, beta_slow=2, finetuned=False, device=None):
|
255 |
+
super().__init__()
|
256 |
+
|
257 |
+
self.dim = dim
|
258 |
+
self.max_position_embeddings = max_position_embeddings
|
259 |
+
self.base = base
|
260 |
+
self.scale = scale
|
261 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
262 |
+
self.extrapolation_factor = extrapolation_factor
|
263 |
+
self.attn_factor = attn_factor
|
264 |
+
self.beta_fast = beta_fast
|
265 |
+
self.beta_slow = beta_slow
|
266 |
+
|
267 |
+
self.yarn(device)
|
268 |
+
|
269 |
+
# Build here to make `torch.jit.trace` work.
|
270 |
+
self.max_seq_len_cached = max_position_embeddings
|
271 |
+
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
272 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
273 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
274 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
275 |
+
dtype = torch.get_default_dtype()
|
276 |
+
|
277 |
+
self.register_buffer("cos_cached", (emb.cos() * self.mscale).to(dtype), persistent=False)
|
278 |
+
self.register_buffer("sin_cached", (emb.sin() * self.mscale).to(dtype), persistent=False)
|
279 |
+
|
280 |
+
def forward(self, x, seq_len=None):
|
281 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
282 |
+
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
|
283 |
+
if seq_len > self.max_seq_len_cached:
|
284 |
+
self.max_seq_len_cached = seq_len
|
285 |
+
|
286 |
+
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
|
287 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
288 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
289 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
290 |
+
|
291 |
+
self.register_buffer("cos_cached", (emb.cos() * self.mscale).to(x.dtype), persistent=False)
|
292 |
+
self.register_buffer("sin_cached", (emb.sin() * self.mscale).to(x.dtype), persistent=False)
|
293 |
+
return (
|
294 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
295 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
296 |
+
)
|
297 |
+
|
298 |
+
def yarn(self, device):
|
299 |
+
pos_freqs = self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
300 |
+
inv_freq_extrapolation = 1.0 / pos_freqs
|
301 |
+
inv_freq_interpolation = 1.0 / (self.scale * pos_freqs)
|
302 |
+
|
303 |
+
low, high = _yarn_find_correction_range(self.beta_fast, self.beta_slow, self.dim, self.base, self.original_max_position_embeddings)
|
304 |
+
inv_freq_mask = (1 - _yarn_linear_ramp_mask(low, high, self.dim // 2).float().to(device)) * self.extrapolation_factor # Get n-d rotational scaling corrected for extrapolation
|
305 |
+
inv_freq = inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask
|
306 |
+
|
307 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
308 |
+
self.mscale = float(_yarn_get_mscale(self.scale) * self.attn_factor) # Get n-d magnitude scaling corrected for interpolation
|
309 |
+
|
310 |
+
|
311 |
+
class MistralDynamicYaRNScaledRotaryEmbedding(torch.nn.Module):
|
312 |
+
"""MistralRotaryEmbedding extended with Dynamic YaRN. See: https://arxiv.org/abs/2309.00071"""
|
313 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, original_max_position_embeddings=2048,
|
314 |
+
extrapolation_factor=1, attn_factor=1, beta_fast=128, beta_slow=2, finetuned=False, device=None):
|
315 |
+
super().__init__()
|
316 |
+
|
317 |
+
self.dim = dim
|
318 |
+
self.max_position_embeddings = max_position_embeddings
|
319 |
+
self.base = base
|
320 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
321 |
+
self.extrapolation_factor = extrapolation_factor
|
322 |
+
self.attn_factor = attn_factor
|
323 |
+
self.beta_fast = beta_fast
|
324 |
+
self.beta_slow = beta_slow
|
325 |
+
|
326 |
+
if finetuned:
|
327 |
+
self.yarn(self.max_position_embeddings / self.original_max_position_embeddings, device)
|
328 |
+
else:
|
329 |
+
inv_freq = 1.0 / \
|
330 |
+
(base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
331 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
332 |
+
self.mscale = 1
|
333 |
+
|
334 |
+
# Build here to make `torch.jit.trace` work.
|
335 |
+
self.max_seq_len_cached = max_position_embeddings
|
336 |
+
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32)
|
337 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
338 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
339 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
340 |
+
dtype = torch.get_default_dtype()
|
341 |
+
|
342 |
+
self.register_buffer("cos_cached", (emb.cos() * self.mscale).to(dtype), persistent=False)
|
343 |
+
self.register_buffer("sin_cached", (emb.sin() * self.mscale).to(dtype), persistent=False)
|
344 |
+
|
345 |
+
def forward(self, x, seq_len=None):
|
346 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
347 |
+
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
|
348 |
+
if seq_len > self.max_seq_len_cached:
|
349 |
+
self.max_seq_len_cached = seq_len
|
350 |
+
|
351 |
+
self.yarn(seq_len / self.max_position_embeddings, x.device)
|
352 |
+
|
353 |
+
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
|
354 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
355 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
356 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
357 |
+
|
358 |
+
self.register_buffer("cos_cached", (emb.cos() * self.mscale).to(x.dtype), persistent=False)
|
359 |
+
self.register_buffer("sin_cached", (emb.sin() * self.mscale).to(x.dtype), persistent=False)
|
360 |
+
return (
|
361 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
362 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
363 |
+
)
|
364 |
+
|
365 |
+
def yarn(self, scale, device):
|
366 |
+
pos_freqs = self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
367 |
+
inv_freq_extrapolation = 1.0 / pos_freqs
|
368 |
+
inv_freq_interpolation = 1.0 / (scale * pos_freqs)
|
369 |
+
|
370 |
+
low, high = _yarn_find_correction_range(self.beta_fast, self.beta_slow, self.dim, self.base, self.original_max_position_embeddings)
|
371 |
+
inv_freq_mask = (1 - _yarn_linear_ramp_mask(low, high, self.dim // 2).float().to(device)) * self.extrapolation_factor # Get n-d rotational scaling corrected for extrapolation
|
372 |
+
inv_freq = inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask
|
373 |
+
|
374 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
375 |
+
self.mscale = float(_yarn_get_mscale(scale) * self.attn_factor) # Get n-d magnitude scaling corrected for interpolation
|
376 |
+
|
377 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
378 |
+
def rotate_half(x):
|
379 |
+
"""Rotates half the hidden dims of the input."""
|
380 |
+
x1 = x[..., : x.shape[-1] // 2]
|
381 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
382 |
+
return torch.cat((-x2, x1), dim=-1)
|
383 |
+
|
384 |
+
|
385 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
386 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
387 |
+
cos = cos[position_ids].unsqueeze(1) # [seq_len, dim] -> [batch_size, 1, seq_len, head_dim]
|
388 |
+
sin = sin[position_ids].unsqueeze(1)
|
389 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
390 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
391 |
+
return q_embed, k_embed
|
392 |
+
|
393 |
+
|
394 |
+
class MistralMLP(nn.Module):
|
395 |
+
def __init__(self, config):
|
396 |
+
super().__init__()
|
397 |
+
self.config = config
|
398 |
+
self.hidden_size = config.hidden_size
|
399 |
+
self.intermediate_size = config.intermediate_size
|
400 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
401 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
402 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
403 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
404 |
+
|
405 |
+
def forward(self, x):
|
406 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
407 |
+
|
408 |
+
|
409 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
410 |
+
"""
|
411 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
412 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
413 |
+
"""
|
414 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
415 |
+
if n_rep == 1:
|
416 |
+
return hidden_states
|
417 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
418 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
419 |
+
|
420 |
+
|
421 |
+
class MistralAttention(nn.Module):
|
422 |
+
"""
|
423 |
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
424 |
+
and "Generating Long Sequences with Sparse Transformers".
|
425 |
+
"""
|
426 |
+
|
427 |
+
def __init__(self, config: MistralConfig):
|
428 |
+
super().__init__()
|
429 |
+
self.config = config
|
430 |
+
self.hidden_size = config.hidden_size
|
431 |
+
self.num_heads = config.num_attention_heads
|
432 |
+
self.head_dim = self.hidden_size // self.num_heads
|
433 |
+
self.num_key_value_heads = config.num_key_value_heads
|
434 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
435 |
+
self.max_position_embeddings = config.max_position_embeddings
|
436 |
+
self.rope_theta = config.rope_theta
|
437 |
+
|
438 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
439 |
+
raise ValueError(
|
440 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
441 |
+
f" and `num_heads`: {self.num_heads})."
|
442 |
+
)
|
443 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
444 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
445 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
446 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
447 |
+
|
448 |
+
self._init_rope()
|
449 |
+
|
450 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
451 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
452 |
+
|
453 |
+
def _init_rope(self):
|
454 |
+
if self.config.rope_scaling is None:
|
455 |
+
self.rotary_emb = MistralRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings, base=self.rope_theta)
|
456 |
+
else:
|
457 |
+
scaling_type = self.config.rope_scaling["type"]
|
458 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
459 |
+
if scaling_type == "linear":
|
460 |
+
self.rotary_emb = MistralLinearScalingRotaryEmbedding(
|
461 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings,
|
462 |
+
scaling_factor=scaling_factor, base=self.rope_theta,
|
463 |
+
)
|
464 |
+
elif scaling_type == "dynamic":
|
465 |
+
self.rotary_emb = MistralDynamicNTKScalingRotaryEmbedding(
|
466 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor,
|
467 |
+
base=self.rope_theta,
|
468 |
+
)
|
469 |
+
elif scaling_type == "yarn":
|
470 |
+
original_max_position_embeddings = self.config.rope_scaling["original_max_position_embeddings"]
|
471 |
+
self.rotary_emb = MistralYaRNScaledRotaryEmbedding(
|
472 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings, scale=scaling_factor,
|
473 |
+
original_max_position_embeddings=original_max_position_embeddings, base=self.rope_theta,
|
474 |
+
)
|
475 |
+
elif scaling_type == "dynamic-yarn":
|
476 |
+
original_max_position_embeddings = self.config.rope_scaling["original_max_position_embeddings"]
|
477 |
+
self.rotary_emb = MistralDynamicYaRNScaledRotaryEmbedding(
|
478 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings,
|
479 |
+
original_max_position_embeddings=original_max_position_embeddings, base=self.rope_theta,
|
480 |
+
)
|
481 |
+
else:
|
482 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
483 |
+
|
484 |
+
def forward(
|
485 |
+
self,
|
486 |
+
hidden_states: torch.Tensor,
|
487 |
+
attention_mask: Optional[torch.Tensor] = None,
|
488 |
+
position_ids: Optional[torch.LongTensor] = None,
|
489 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
490 |
+
output_attentions: bool = False,
|
491 |
+
use_cache: bool = False,
|
492 |
+
padding_mask: Optional[torch.Tensor] = None,
|
493 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
494 |
+
bsz, q_len, _ = hidden_states.size()
|
495 |
+
|
496 |
+
query_states = self.q_proj(hidden_states)
|
497 |
+
key_states = self.k_proj(hidden_states)
|
498 |
+
value_states = self.v_proj(hidden_states)
|
499 |
+
|
500 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
501 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
502 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
503 |
+
|
504 |
+
kv_seq_len = key_states.shape[-2]
|
505 |
+
if past_key_value is not None:
|
506 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
507 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
508 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
509 |
+
|
510 |
+
if past_key_value is not None:
|
511 |
+
# reuse k, v, self_attention
|
512 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
513 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
514 |
+
|
515 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
516 |
+
|
517 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
518 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
519 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
520 |
+
|
521 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
522 |
+
|
523 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
524 |
+
raise ValueError(
|
525 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
526 |
+
f" {attn_weights.size()}"
|
527 |
+
)
|
528 |
+
|
529 |
+
if attention_mask is not None:
|
530 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
531 |
+
raise ValueError(
|
532 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
533 |
+
)
|
534 |
+
|
535 |
+
attn_weights = attn_weights + attention_mask
|
536 |
+
|
537 |
+
# upcast attention to fp32
|
538 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
539 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
540 |
+
|
541 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
542 |
+
raise ValueError(
|
543 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
544 |
+
f" {attn_output.size()}"
|
545 |
+
)
|
546 |
+
|
547 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
548 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
549 |
+
|
550 |
+
attn_output = self.o_proj(attn_output)
|
551 |
+
|
552 |
+
if not output_attentions:
|
553 |
+
attn_weights = None
|
554 |
+
|
555 |
+
return attn_output, attn_weights, past_key_value
|
556 |
+
|
557 |
+
|
558 |
+
class MistralFlashAttention2(MistralAttention):
|
559 |
+
"""
|
560 |
+
Mistral flash attention module. This module inherits from `MistralAttention` as the weights of the module stays
|
561 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
562 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
563 |
+
"""
|
564 |
+
|
565 |
+
def forward(
|
566 |
+
self,
|
567 |
+
hidden_states: torch.Tensor,
|
568 |
+
attention_mask: Optional[torch.Tensor] = None,
|
569 |
+
position_ids: Optional[torch.LongTensor] = None,
|
570 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
571 |
+
output_attentions: bool = False,
|
572 |
+
use_cache: bool = False,
|
573 |
+
padding_mask: Optional[torch.LongTensor] = None,
|
574 |
+
):
|
575 |
+
bsz, q_len, _ = hidden_states.size()
|
576 |
+
|
577 |
+
query_states = self.q_proj(hidden_states)
|
578 |
+
key_states = self.k_proj(hidden_states)
|
579 |
+
value_states = self.v_proj(hidden_states)
|
580 |
+
|
581 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
582 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
583 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
584 |
+
|
585 |
+
kv_seq_len = key_states.shape[-2]
|
586 |
+
if past_key_value is not None:
|
587 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
588 |
+
|
589 |
+
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
590 |
+
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
|
591 |
+
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
|
592 |
+
|
593 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
594 |
+
|
595 |
+
use_sliding_windows = (
|
596 |
+
_flash_supports_window_size
|
597 |
+
and hasattr(self.config, "sliding_window")
|
598 |
+
and kv_seq_len > self.config.sliding_window
|
599 |
+
)
|
600 |
+
|
601 |
+
if not _flash_supports_window_size:
|
602 |
+
logger.warning_once(
|
603 |
+
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
|
604 |
+
" make sure to upgrade flash-attn library."
|
605 |
+
)
|
606 |
+
|
607 |
+
if past_key_value is not None:
|
608 |
+
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
609 |
+
if hasattr(self.config, "sliding_window") and kv_seq_len > self.config.sliding_window:
|
610 |
+
slicing_tokens = kv_seq_len - self.config.sliding_window
|
611 |
+
|
612 |
+
past_key = past_key_value[0]
|
613 |
+
past_value = past_key_value[1]
|
614 |
+
|
615 |
+
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
616 |
+
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
617 |
+
|
618 |
+
if past_key.shape[-2] != self.config.sliding_window - 1:
|
619 |
+
raise ValueError(
|
620 |
+
f"past key much have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
|
621 |
+
f" {past_key.shape}"
|
622 |
+
)
|
623 |
+
|
624 |
+
past_key_value = (past_key, past_value)
|
625 |
+
|
626 |
+
if padding_mask is not None:
|
627 |
+
padding_mask = padding_mask[:, slicing_tokens:]
|
628 |
+
padding_mask = torch.cat([padding_mask, torch.ones_like(padding_mask[:, -1:])], dim=-1)
|
629 |
+
|
630 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
631 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
632 |
+
|
633 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
634 |
+
|
635 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
636 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
637 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
638 |
+
|
639 |
+
# TODO: Mistral does not have dropout in the config??
|
640 |
+
# It is recommended to use dropout with FA according to the docs
|
641 |
+
# when training.
|
642 |
+
dropout_rate = 0.0 # if not self.training else self.attn_dropout
|
643 |
+
|
644 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
645 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
646 |
+
# cast them back in float16 just to be sure everything works as expected.
|
647 |
+
input_dtype = query_states.dtype
|
648 |
+
if input_dtype == torch.float32:
|
649 |
+
logger.warning_once(
|
650 |
+
"The input hidden states seems to be silently casted in float32, this might be related to"
|
651 |
+
" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
652 |
+
" float16."
|
653 |
+
)
|
654 |
+
|
655 |
+
query_states = query_states.to(torch.float16)
|
656 |
+
key_states = key_states.to(torch.float16)
|
657 |
+
value_states = value_states.to(torch.float16)
|
658 |
+
|
659 |
+
# Reashape to the expected shape for Flash Attention
|
660 |
+
query_states = query_states.transpose(1, 2)
|
661 |
+
key_states = key_states.transpose(1, 2)
|
662 |
+
value_states = value_states.transpose(1, 2)
|
663 |
+
|
664 |
+
attn_output = self._flash_attention_forward(
|
665 |
+
query_states,
|
666 |
+
key_states,
|
667 |
+
value_states,
|
668 |
+
padding_mask,
|
669 |
+
q_len,
|
670 |
+
dropout=dropout_rate,
|
671 |
+
use_sliding_windows=use_sliding_windows,
|
672 |
+
)
|
673 |
+
|
674 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
675 |
+
attn_output = self.o_proj(attn_output)
|
676 |
+
|
677 |
+
if not output_attentions:
|
678 |
+
attn_weights = None
|
679 |
+
|
680 |
+
return attn_output, attn_weights, past_key_value
|
681 |
+
|
682 |
+
def _flash_attention_forward(
|
683 |
+
self,
|
684 |
+
query_states,
|
685 |
+
key_states,
|
686 |
+
value_states,
|
687 |
+
padding_mask,
|
688 |
+
query_length,
|
689 |
+
dropout=0.0,
|
690 |
+
softmax_scale=None,
|
691 |
+
use_sliding_windows=False,
|
692 |
+
):
|
693 |
+
"""
|
694 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
695 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
696 |
+
|
697 |
+
Args:
|
698 |
+
query_states (`torch.Tensor`):
|
699 |
+
Input query states to be passed to Flash Attention API
|
700 |
+
key_states (`torch.Tensor`):
|
701 |
+
Input key states to be passed to Flash Attention API
|
702 |
+
value_states (`torch.Tensor`):
|
703 |
+
Input value states to be passed to Flash Attention API
|
704 |
+
padding_mask (`torch.Tensor`):
|
705 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
706 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
707 |
+
dropout (`int`, *optional*):
|
708 |
+
Attention dropout
|
709 |
+
softmax_scale (`float`, *optional*):
|
710 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
711 |
+
use_sliding_windows (`bool`, *optional*):
|
712 |
+
Whether to activate sliding window attention.
|
713 |
+
"""
|
714 |
+
# Contains at least one padding token in the sequence
|
715 |
+
if padding_mask is not None:
|
716 |
+
batch_size = query_states.shape[0]
|
717 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
718 |
+
query_states, key_states, value_states, padding_mask, query_length
|
719 |
+
)
|
720 |
+
|
721 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
722 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
723 |
+
|
724 |
+
if not use_sliding_windows:
|
725 |
+
attn_output_unpad = flash_attn_varlen_func(
|
726 |
+
query_states,
|
727 |
+
key_states,
|
728 |
+
value_states,
|
729 |
+
cu_seqlens_q=cu_seqlens_q,
|
730 |
+
cu_seqlens_k=cu_seqlens_k,
|
731 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
732 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
733 |
+
dropout_p=dropout,
|
734 |
+
softmax_scale=softmax_scale,
|
735 |
+
causal=True,
|
736 |
+
)
|
737 |
+
else:
|
738 |
+
attn_output_unpad = flash_attn_varlen_func(
|
739 |
+
query_states,
|
740 |
+
key_states,
|
741 |
+
value_states,
|
742 |
+
cu_seqlens_q=cu_seqlens_q,
|
743 |
+
cu_seqlens_k=cu_seqlens_k,
|
744 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
745 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
746 |
+
dropout_p=dropout,
|
747 |
+
softmax_scale=softmax_scale,
|
748 |
+
causal=True,
|
749 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
750 |
+
)
|
751 |
+
|
752 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
753 |
+
else:
|
754 |
+
if not use_sliding_windows:
|
755 |
+
attn_output = flash_attn_func(
|
756 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=True
|
757 |
+
)
|
758 |
+
else:
|
759 |
+
attn_output = flash_attn_func(
|
760 |
+
query_states,
|
761 |
+
key_states,
|
762 |
+
value_states,
|
763 |
+
dropout,
|
764 |
+
softmax_scale=softmax_scale,
|
765 |
+
causal=True,
|
766 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
767 |
+
)
|
768 |
+
|
769 |
+
return attn_output
|
770 |
+
|
771 |
+
def _upad_input(self, query_layer, key_layer, value_layer, padding_mask, query_length):
|
772 |
+
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
773 |
+
|
774 |
+
# On the first iteration we need to properly re-create the padding mask
|
775 |
+
# by slicing it on the proper place
|
776 |
+
if kv_seq_len != padding_mask.shape[-1]:
|
777 |
+
padding_mask_num_tokens = padding_mask.shape[-1]
|
778 |
+
padding_mask = padding_mask[:, padding_mask_num_tokens - kv_seq_len :]
|
779 |
+
|
780 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(padding_mask)
|
781 |
+
|
782 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
783 |
+
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
784 |
+
|
785 |
+
if query_length == kv_seq_len:
|
786 |
+
query_layer = index_first_axis(
|
787 |
+
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
|
788 |
+
)
|
789 |
+
cu_seqlens_q = cu_seqlens_k
|
790 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
791 |
+
indices_q = indices_k
|
792 |
+
elif query_length == 1:
|
793 |
+
max_seqlen_in_batch_q = 1
|
794 |
+
cu_seqlens_q = torch.arange(
|
795 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
796 |
+
) # There is a memcpy here, that is very bad.
|
797 |
+
indices_q = cu_seqlens_q[:-1]
|
798 |
+
query_layer = query_layer.squeeze(1)
|
799 |
+
else:
|
800 |
+
# The -q_len: slice assumes left padding.
|
801 |
+
padding_mask = padding_mask[:, -query_length:]
|
802 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, padding_mask)
|
803 |
+
|
804 |
+
return (
|
805 |
+
query_layer,
|
806 |
+
key_layer,
|
807 |
+
value_layer,
|
808 |
+
indices_q,
|
809 |
+
(cu_seqlens_q, cu_seqlens_k),
|
810 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
811 |
+
)
|
812 |
+
|
813 |
+
|
814 |
+
class MistralDecoderLayer(nn.Module):
|
815 |
+
def __init__(self, config: MistralConfig):
|
816 |
+
super().__init__()
|
817 |
+
self.hidden_size = config.hidden_size
|
818 |
+
self.self_attn = (
|
819 |
+
MistralAttention(config=config)
|
820 |
+
if not getattr(config, "_flash_attn_2_enabled", False)
|
821 |
+
else MistralFlashAttention2(config)
|
822 |
+
)
|
823 |
+
self.mlp = MistralMLP(config)
|
824 |
+
self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
825 |
+
self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
826 |
+
|
827 |
+
def forward(
|
828 |
+
self,
|
829 |
+
hidden_states: torch.Tensor,
|
830 |
+
attention_mask: Optional[torch.Tensor] = None,
|
831 |
+
position_ids: Optional[torch.LongTensor] = None,
|
832 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
833 |
+
output_attentions: Optional[bool] = False,
|
834 |
+
use_cache: Optional[bool] = False,
|
835 |
+
padding_mask: Optional[torch.Tensor] = None,
|
836 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
837 |
+
"""
|
838 |
+
Args:
|
839 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
840 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
841 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
842 |
+
output_attentions (`bool`, *optional*):
|
843 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
844 |
+
returned tensors for more detail.
|
845 |
+
use_cache (`bool`, *optional*):
|
846 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
847 |
+
(see `past_key_values`).
|
848 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
849 |
+
"""
|
850 |
+
|
851 |
+
residual = hidden_states
|
852 |
+
|
853 |
+
hidden_states = self.input_layernorm(hidden_states)
|
854 |
+
|
855 |
+
# Self Attention
|
856 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
857 |
+
hidden_states=hidden_states,
|
858 |
+
attention_mask=attention_mask,
|
859 |
+
position_ids=position_ids,
|
860 |
+
past_key_value=past_key_value,
|
861 |
+
output_attentions=output_attentions,
|
862 |
+
use_cache=use_cache,
|
863 |
+
padding_mask=padding_mask,
|
864 |
+
)
|
865 |
+
hidden_states = residual + hidden_states
|
866 |
+
|
867 |
+
# Fully Connected
|
868 |
+
residual = hidden_states
|
869 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
870 |
+
hidden_states = self.mlp(hidden_states)
|
871 |
+
hidden_states = residual + hidden_states
|
872 |
+
|
873 |
+
outputs = (hidden_states,)
|
874 |
+
|
875 |
+
if output_attentions:
|
876 |
+
outputs += (self_attn_weights,)
|
877 |
+
|
878 |
+
if use_cache:
|
879 |
+
outputs += (present_key_value,)
|
880 |
+
|
881 |
+
return outputs
|
882 |
+
|
883 |
+
|
884 |
+
MISTRAL_START_DOCSTRING = r"""
|
885 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
886 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
887 |
+
etc.)
|
888 |
+
|
889 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
890 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
891 |
+
and behavior.
|
892 |
+
|
893 |
+
Parameters:
|
894 |
+
config ([`MistralConfig`]):
|
895 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
896 |
+
load the weights associated with the model, only the configuration. Check out the
|
897 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
898 |
+
"""
|
899 |
+
|
900 |
+
|
901 |
+
@add_start_docstrings(
|
902 |
+
"The bare Mistral Model outputting raw hidden-states without any specific head on top.",
|
903 |
+
MISTRAL_START_DOCSTRING,
|
904 |
+
)
|
905 |
+
class MistralPreTrainedModel(PreTrainedModel):
|
906 |
+
config_class = MistralConfig
|
907 |
+
base_model_prefix = "model"
|
908 |
+
supports_gradient_checkpointing = True
|
909 |
+
_no_split_modules = ["MistralDecoderLayer"]
|
910 |
+
_skip_keys_device_placement = "past_key_values"
|
911 |
+
_supports_flash_attn_2 = True
|
912 |
+
|
913 |
+
def _init_weights(self, module):
|
914 |
+
std = self.config.initializer_range
|
915 |
+
if isinstance(module, nn.Linear):
|
916 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
917 |
+
if module.bias is not None:
|
918 |
+
module.bias.data.zero_()
|
919 |
+
elif isinstance(module, nn.Embedding):
|
920 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
921 |
+
if module.padding_idx is not None:
|
922 |
+
module.weight.data[module.padding_idx].zero_()
|
923 |
+
|
924 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
925 |
+
if isinstance(module, MistralModel):
|
926 |
+
module.gradient_checkpointing = value
|
927 |
+
|
928 |
+
|
929 |
+
MISTRAL_INPUTS_DOCSTRING = r"""
|
930 |
+
Args:
|
931 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
932 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
933 |
+
it.
|
934 |
+
|
935 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
936 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
937 |
+
|
938 |
+
[What are input IDs?](../glossary#input-ids)
|
939 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
940 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
941 |
+
|
942 |
+
- 1 for tokens that are **not masked**,
|
943 |
+
- 0 for tokens that are **masked**.
|
944 |
+
|
945 |
+
[What are attention masks?](../glossary#attention-mask)
|
946 |
+
|
947 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
948 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
949 |
+
|
950 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
951 |
+
`past_key_values`).
|
952 |
+
|
953 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
954 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
955 |
+
information on the default strategy.
|
956 |
+
|
957 |
+
- 1 indicates the head is **not masked**,
|
958 |
+
- 0 indicates the head is **masked**.
|
959 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
960 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
961 |
+
config.n_positions - 1]`.
|
962 |
+
|
963 |
+
[What are position IDs?](../glossary#position-ids)
|
964 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
965 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
966 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
967 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
968 |
+
|
969 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
970 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
971 |
+
|
972 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
973 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
974 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
975 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
976 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
977 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
978 |
+
model's internal embedding lookup matrix.
|
979 |
+
use_cache (`bool`, *optional*):
|
980 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
981 |
+
`past_key_values`).
|
982 |
+
output_attentions (`bool`, *optional*):
|
983 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
984 |
+
tensors for more detail.
|
985 |
+
output_hidden_states (`bool`, *optional*):
|
986 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
987 |
+
more detail.
|
988 |
+
return_dict (`bool`, *optional*):
|
989 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
990 |
+
"""
|
991 |
+
|
992 |
+
|
993 |
+
@add_start_docstrings(
|
994 |
+
"The bare Mistral Model outputting raw hidden-states without any specific head on top.",
|
995 |
+
MISTRAL_START_DOCSTRING,
|
996 |
+
)
|
997 |
+
class MistralModel(MistralPreTrainedModel):
|
998 |
+
"""
|
999 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`]
|
1000 |
+
|
1001 |
+
Args:
|
1002 |
+
config: MistralConfig
|
1003 |
+
"""
|
1004 |
+
|
1005 |
+
def __init__(self, config: MistralConfig):
|
1006 |
+
super().__init__(config)
|
1007 |
+
self.padding_idx = config.pad_token_id
|
1008 |
+
self.vocab_size = config.vocab_size
|
1009 |
+
|
1010 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
1011 |
+
self.layers = nn.ModuleList([MistralDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
1012 |
+
self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1013 |
+
|
1014 |
+
self.gradient_checkpointing = False
|
1015 |
+
# Initialize weights and apply final processing
|
1016 |
+
self.post_init()
|
1017 |
+
|
1018 |
+
def get_input_embeddings(self):
|
1019 |
+
return self.embed_tokens
|
1020 |
+
|
1021 |
+
def set_input_embeddings(self, value):
|
1022 |
+
self.embed_tokens = value
|
1023 |
+
|
1024 |
+
def _prepare_decoder_attention_mask(
|
1025 |
+
self, attention_mask, input_shape, inputs_embeds, past_key_values_length, sliding_window
|
1026 |
+
):
|
1027 |
+
# create causal mask
|
1028 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1029 |
+
combined_attention_mask = None
|
1030 |
+
if input_shape[-1] > 1:
|
1031 |
+
if sliding_window is not None:
|
1032 |
+
combined_attention_mask = _make_sliding_window_causal_mask(
|
1033 |
+
input_shape,
|
1034 |
+
inputs_embeds.dtype,
|
1035 |
+
device=inputs_embeds.device,
|
1036 |
+
past_key_values_length=past_key_values_length,
|
1037 |
+
sliding_window=sliding_window,
|
1038 |
+
)
|
1039 |
+
else:
|
1040 |
+
combined_attention_mask = _make_causal_mask(
|
1041 |
+
input_shape,
|
1042 |
+
inputs_embeds.dtype,
|
1043 |
+
device=inputs_embeds.device,
|
1044 |
+
past_key_values_length=past_key_values_length,
|
1045 |
+
)
|
1046 |
+
|
1047 |
+
if attention_mask is not None:
|
1048 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1049 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
1050 |
+
inputs_embeds.device
|
1051 |
+
)
|
1052 |
+
combined_attention_mask = (
|
1053 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
1054 |
+
)
|
1055 |
+
|
1056 |
+
return combined_attention_mask
|
1057 |
+
|
1058 |
+
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
1059 |
+
def forward(
|
1060 |
+
self,
|
1061 |
+
input_ids: torch.LongTensor = None,
|
1062 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1063 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1064 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1065 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1066 |
+
use_cache: Optional[bool] = None,
|
1067 |
+
output_attentions: Optional[bool] = None,
|
1068 |
+
output_hidden_states: Optional[bool] = None,
|
1069 |
+
return_dict: Optional[bool] = None,
|
1070 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
1071 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1072 |
+
output_hidden_states = (
|
1073 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1074 |
+
)
|
1075 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1076 |
+
|
1077 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1078 |
+
|
1079 |
+
# retrieve input_ids and inputs_embeds
|
1080 |
+
if input_ids is not None and inputs_embeds is not None:
|
1081 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
1082 |
+
elif input_ids is not None:
|
1083 |
+
batch_size, seq_length = input_ids.shape
|
1084 |
+
elif inputs_embeds is not None:
|
1085 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
1086 |
+
else:
|
1087 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
1088 |
+
|
1089 |
+
seq_length_with_past = seq_length
|
1090 |
+
past_key_values_length = 0
|
1091 |
+
|
1092 |
+
if past_key_values is not None:
|
1093 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
1094 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
1095 |
+
|
1096 |
+
if position_ids is None:
|
1097 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1098 |
+
position_ids = torch.arange(
|
1099 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
1100 |
+
)
|
1101 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
1102 |
+
else:
|
1103 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
1104 |
+
|
1105 |
+
if inputs_embeds is None:
|
1106 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1107 |
+
|
1108 |
+
padding_mask = None
|
1109 |
+
|
1110 |
+
# embed positions
|
1111 |
+
if attention_mask is None:
|
1112 |
+
attention_mask = torch.ones(
|
1113 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
1114 |
+
)
|
1115 |
+
elif 0 in attention_mask:
|
1116 |
+
padding_mask = attention_mask
|
1117 |
+
|
1118 |
+
if (
|
1119 |
+
padding_mask is not None
|
1120 |
+
and hasattr(self.config, "_flash_attn_2_enabled")
|
1121 |
+
and self.config._flash_attn_2_enabled
|
1122 |
+
):
|
1123 |
+
is_padding_right = padding_mask[:, -1].sum().item() != batch_size
|
1124 |
+
if is_padding_right:
|
1125 |
+
raise ValueError(
|
1126 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
1127 |
+
" this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
|
1128 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
1129 |
+
)
|
1130 |
+
|
1131 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
1132 |
+
attention_mask,
|
1133 |
+
(batch_size, seq_length),
|
1134 |
+
inputs_embeds,
|
1135 |
+
past_key_values_length,
|
1136 |
+
sliding_window=self.config.sliding_window if hasattr(self.config, "sliding_window") else None,
|
1137 |
+
)
|
1138 |
+
|
1139 |
+
hidden_states = inputs_embeds
|
1140 |
+
|
1141 |
+
if self.gradient_checkpointing and self.training:
|
1142 |
+
if use_cache:
|
1143 |
+
logger.warning_once(
|
1144 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1145 |
+
)
|
1146 |
+
use_cache = False
|
1147 |
+
|
1148 |
+
# decoder layers
|
1149 |
+
all_hidden_states = () if output_hidden_states else None
|
1150 |
+
all_self_attns = () if output_attentions else None
|
1151 |
+
next_decoder_cache = () if use_cache else None
|
1152 |
+
|
1153 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1154 |
+
if output_hidden_states:
|
1155 |
+
all_hidden_states += (hidden_states,)
|
1156 |
+
|
1157 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
1158 |
+
|
1159 |
+
if self.gradient_checkpointing and self.training:
|
1160 |
+
|
1161 |
+
def create_custom_forward(module):
|
1162 |
+
def custom_forward(*inputs):
|
1163 |
+
# None for past_key_value
|
1164 |
+
return module(*inputs, past_key_value, output_attentions, padding_mask=padding_mask)
|
1165 |
+
|
1166 |
+
return custom_forward
|
1167 |
+
|
1168 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
1169 |
+
create_custom_forward(decoder_layer),
|
1170 |
+
hidden_states,
|
1171 |
+
attention_mask,
|
1172 |
+
position_ids,
|
1173 |
+
)
|
1174 |
+
else:
|
1175 |
+
layer_outputs = decoder_layer(
|
1176 |
+
hidden_states,
|
1177 |
+
attention_mask=attention_mask,
|
1178 |
+
position_ids=position_ids,
|
1179 |
+
past_key_value=past_key_value,
|
1180 |
+
output_attentions=output_attentions,
|
1181 |
+
use_cache=use_cache,
|
1182 |
+
padding_mask=padding_mask,
|
1183 |
+
)
|
1184 |
+
|
1185 |
+
hidden_states = layer_outputs[0]
|
1186 |
+
|
1187 |
+
if use_cache:
|
1188 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
1189 |
+
|
1190 |
+
if output_attentions:
|
1191 |
+
all_self_attns += (layer_outputs[1],)
|
1192 |
+
|
1193 |
+
hidden_states = self.norm(hidden_states)
|
1194 |
+
|
1195 |
+
# add hidden states from the last decoder layer
|
1196 |
+
if output_hidden_states:
|
1197 |
+
all_hidden_states += (hidden_states,)
|
1198 |
+
|
1199 |
+
next_cache = next_decoder_cache if use_cache else None
|
1200 |
+
if not return_dict:
|
1201 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1202 |
+
return BaseModelOutputWithPast(
|
1203 |
+
last_hidden_state=hidden_states,
|
1204 |
+
past_key_values=next_cache,
|
1205 |
+
hidden_states=all_hidden_states,
|
1206 |
+
attentions=all_self_attns,
|
1207 |
+
)
|
1208 |
+
|
1209 |
+
|
1210 |
+
class MistralForCausalLM(MistralPreTrainedModel):
|
1211 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1212 |
+
|
1213 |
+
def __init__(self, config):
|
1214 |
+
super().__init__(config)
|
1215 |
+
self.model = MistralModel(config)
|
1216 |
+
self.vocab_size = config.vocab_size
|
1217 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1218 |
+
|
1219 |
+
# Initialize weights and apply final processing
|
1220 |
+
self.post_init()
|
1221 |
+
|
1222 |
+
def get_input_embeddings(self):
|
1223 |
+
return self.model.embed_tokens
|
1224 |
+
|
1225 |
+
def set_input_embeddings(self, value):
|
1226 |
+
self.model.embed_tokens = value
|
1227 |
+
|
1228 |
+
def get_output_embeddings(self):
|
1229 |
+
return self.lm_head
|
1230 |
+
|
1231 |
+
def set_output_embeddings(self, new_embeddings):
|
1232 |
+
self.lm_head = new_embeddings
|
1233 |
+
|
1234 |
+
def set_decoder(self, decoder):
|
1235 |
+
self.model = decoder
|
1236 |
+
|
1237 |
+
def get_decoder(self):
|
1238 |
+
return self.model
|
1239 |
+
|
1240 |
+
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
1241 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1242 |
+
def forward(
|
1243 |
+
self,
|
1244 |
+
input_ids: torch.LongTensor = None,
|
1245 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1246 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1247 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1248 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1249 |
+
labels: Optional[torch.LongTensor] = None,
|
1250 |
+
use_cache: Optional[bool] = None,
|
1251 |
+
output_attentions: Optional[bool] = None,
|
1252 |
+
output_hidden_states: Optional[bool] = None,
|
1253 |
+
return_dict: Optional[bool] = None,
|
1254 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1255 |
+
r"""
|
1256 |
+
Args:
|
1257 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1258 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1259 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1260 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1261 |
+
|
1262 |
+
Returns:
|
1263 |
+
|
1264 |
+
Example:
|
1265 |
+
|
1266 |
+
```python
|
1267 |
+
>>> from transformers import AutoTokenizer, MistralForCausalLM
|
1268 |
+
|
1269 |
+
>>> model = MistralForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1270 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1271 |
+
|
1272 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1273 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1274 |
+
|
1275 |
+
>>> # Generate
|
1276 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1277 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1278 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1279 |
+
```"""
|
1280 |
+
|
1281 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1282 |
+
output_hidden_states = (
|
1283 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1284 |
+
)
|
1285 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1286 |
+
|
1287 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1288 |
+
outputs = self.model(
|
1289 |
+
input_ids=input_ids,
|
1290 |
+
attention_mask=attention_mask,
|
1291 |
+
position_ids=position_ids,
|
1292 |
+
past_key_values=past_key_values,
|
1293 |
+
inputs_embeds=inputs_embeds,
|
1294 |
+
use_cache=use_cache,
|
1295 |
+
output_attentions=output_attentions,
|
1296 |
+
output_hidden_states=output_hidden_states,
|
1297 |
+
return_dict=return_dict,
|
1298 |
+
)
|
1299 |
+
|
1300 |
+
hidden_states = outputs[0]
|
1301 |
+
logits = self.lm_head(hidden_states)
|
1302 |
+
logits = logits.float()
|
1303 |
+
|
1304 |
+
loss = None
|
1305 |
+
if labels is not None:
|
1306 |
+
# Shift so that tokens < n predict n
|
1307 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1308 |
+
shift_labels = labels[..., 1:].contiguous()
|
1309 |
+
# Flatten the tokens
|
1310 |
+
loss_fct = CrossEntropyLoss()
|
1311 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1312 |
+
shift_labels = shift_labels.view(-1)
|
1313 |
+
# Enable model parallelism
|
1314 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1315 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1316 |
+
|
1317 |
+
if not return_dict:
|
1318 |
+
output = (logits,) + outputs[1:]
|
1319 |
+
return (loss,) + output if loss is not None else output
|
1320 |
+
|
1321 |
+
return CausalLMOutputWithPast(
|
1322 |
+
loss=loss,
|
1323 |
+
logits=logits,
|
1324 |
+
past_key_values=outputs.past_key_values,
|
1325 |
+
hidden_states=outputs.hidden_states,
|
1326 |
+
attentions=outputs.attentions,
|
1327 |
+
)
|
1328 |
+
|
1329 |
+
def prepare_inputs_for_generation(
|
1330 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1331 |
+
):
|
1332 |
+
if past_key_values:
|
1333 |
+
input_ids = input_ids[:, -1:]
|
1334 |
+
|
1335 |
+
position_ids = kwargs.get("position_ids", None)
|
1336 |
+
if attention_mask is not None and position_ids is None:
|
1337 |
+
# create position_ids on the fly for batch generation
|
1338 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1339 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1340 |
+
if past_key_values:
|
1341 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
1342 |
+
|
1343 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1344 |
+
if inputs_embeds is not None and past_key_values is None:
|
1345 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1346 |
+
else:
|
1347 |
+
model_inputs = {"input_ids": input_ids}
|
1348 |
+
|
1349 |
+
model_inputs.update(
|
1350 |
+
{
|
1351 |
+
"position_ids": position_ids,
|
1352 |
+
"past_key_values": past_key_values,
|
1353 |
+
"use_cache": kwargs.get("use_cache"),
|
1354 |
+
"attention_mask": attention_mask,
|
1355 |
+
}
|
1356 |
+
)
|
1357 |
+
return model_inputs
|
1358 |
+
|
1359 |
+
@staticmethod
|
1360 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1361 |
+
reordered_past = ()
|
1362 |
+
for layer_past in past_key_values:
|
1363 |
+
reordered_past += (
|
1364 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1365 |
+
)
|
1366 |
+
return reordered_past
|
1367 |
+
|
1368 |
+
|
1369 |
+
@add_start_docstrings(
|
1370 |
+
"""
|
1371 |
+
The Mistral Model transformer with a sequence classification head on top (linear layer).
|
1372 |
+
|
1373 |
+
[`MistralForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1374 |
+
(e.g. GPT-2) do.
|
1375 |
+
|
1376 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1377 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1378 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1379 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1380 |
+
each row of the batch).
|
1381 |
+
""",
|
1382 |
+
MISTRAL_START_DOCSTRING,
|
1383 |
+
)
|
1384 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Mistral, LLAMA->MISTRAL
|
1385 |
+
class MistralForSequenceClassification(MistralPreTrainedModel):
|
1386 |
+
def __init__(self, config):
|
1387 |
+
super().__init__(config)
|
1388 |
+
self.num_labels = config.num_labels
|
1389 |
+
self.model = MistralModel(config)
|
1390 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1391 |
+
|
1392 |
+
# Initialize weights and apply final processing
|
1393 |
+
self.post_init()
|
1394 |
+
|
1395 |
+
def get_input_embeddings(self):
|
1396 |
+
return self.model.embed_tokens
|
1397 |
+
|
1398 |
+
def set_input_embeddings(self, value):
|
1399 |
+
self.model.embed_tokens = value
|
1400 |
+
|
1401 |
+
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
1402 |
+
def forward(
|
1403 |
+
self,
|
1404 |
+
input_ids: torch.LongTensor = None,
|
1405 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1406 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1407 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1408 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1409 |
+
labels: Optional[torch.LongTensor] = None,
|
1410 |
+
use_cache: Optional[bool] = None,
|
1411 |
+
output_attentions: Optional[bool] = None,
|
1412 |
+
output_hidden_states: Optional[bool] = None,
|
1413 |
+
return_dict: Optional[bool] = None,
|
1414 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1415 |
+
r"""
|
1416 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1417 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1418 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1419 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1420 |
+
"""
|
1421 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1422 |
+
|
1423 |
+
transformer_outputs = self.model(
|
1424 |
+
input_ids,
|
1425 |
+
attention_mask=attention_mask,
|
1426 |
+
position_ids=position_ids,
|
1427 |
+
past_key_values=past_key_values,
|
1428 |
+
inputs_embeds=inputs_embeds,
|
1429 |
+
use_cache=use_cache,
|
1430 |
+
output_attentions=output_attentions,
|
1431 |
+
output_hidden_states=output_hidden_states,
|
1432 |
+
return_dict=return_dict,
|
1433 |
+
)
|
1434 |
+
hidden_states = transformer_outputs[0]
|
1435 |
+
logits = self.score(hidden_states)
|
1436 |
+
|
1437 |
+
if input_ids is not None:
|
1438 |
+
batch_size = input_ids.shape[0]
|
1439 |
+
else:
|
1440 |
+
batch_size = inputs_embeds.shape[0]
|
1441 |
+
|
1442 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1443 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1444 |
+
if self.config.pad_token_id is None:
|
1445 |
+
sequence_lengths = -1
|
1446 |
+
else:
|
1447 |
+
if input_ids is not None:
|
1448 |
+
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to(
|
1449 |
+
logits.device
|
1450 |
+
)
|
1451 |
+
else:
|
1452 |
+
sequence_lengths = -1
|
1453 |
+
|
1454 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1455 |
+
|
1456 |
+
loss = None
|
1457 |
+
if labels is not None:
|
1458 |
+
labels = labels.to(logits.device)
|
1459 |
+
if self.config.problem_type is None:
|
1460 |
+
if self.num_labels == 1:
|
1461 |
+
self.config.problem_type = "regression"
|
1462 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1463 |
+
self.config.problem_type = "single_label_classification"
|
1464 |
+
else:
|
1465 |
+
self.config.problem_type = "multi_label_classification"
|
1466 |
+
|
1467 |
+
if self.config.problem_type == "regression":
|
1468 |
+
loss_fct = MSELoss()
|
1469 |
+
if self.num_labels == 1:
|
1470 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1471 |
+
else:
|
1472 |
+
loss = loss_fct(pooled_logits, labels)
|
1473 |
+
elif self.config.problem_type == "single_label_classification":
|
1474 |
+
loss_fct = CrossEntropyLoss()
|
1475 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1476 |
+
elif self.config.problem_type == "multi_label_classification":
|
1477 |
+
loss_fct = BCEWithLogitsLoss()
|
1478 |
+
loss = loss_fct(pooled_logits, labels)
|
1479 |
+
if not return_dict:
|
1480 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1481 |
+
return ((loss,) + output) if loss is not None else output
|
1482 |
+
|
1483 |
+
return SequenceClassifierOutputWithPast(
|
1484 |
+
loss=loss,
|
1485 |
+
logits=pooled_logits,
|
1486 |
+
past_key_values=transformer_outputs.past_key_values,
|
1487 |
+
hidden_states=transformer_outputs.hidden_states,
|
1488 |
+
attentions=transformer_outputs.attentions,
|
1489 |
+
)
|
plots.png
ADDED
smash_config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"api_key": null,
|
3 |
+
"verify_url": "http://johnrachwan.pythonanywhere.com",
|
4 |
+
"smash_config": {
|
5 |
+
"pruners": "None",
|
6 |
+
"factorizers": "None",
|
7 |
+
"quantizers": "['llm-int8']",
|
8 |
+
"compilers": "None",
|
9 |
+
"task": "text_text_generation",
|
10 |
+
"device": "cuda",
|
11 |
+
"cache_dir": "/ceph/hdd/staff/charpent/.cache/modelskhxmw20i",
|
12 |
+
"batch_size": 1,
|
13 |
+
"model_name": "NousResearch/Yarn-Mistral-7b-128k",
|
14 |
+
"pruning_ratio": 0.0,
|
15 |
+
"n_quantization_bits": 4,
|
16 |
+
"output_deviation": 0.005,
|
17 |
+
"max_batch_size": 1,
|
18 |
+
"qtype_weight": "torch.qint8",
|
19 |
+
"qtype_activation": "torch.quint8",
|
20 |
+
"qobserver": "<class 'torch.ao.quantization.observer.MinMaxObserver'>",
|
21 |
+
"qscheme": "torch.per_tensor_symmetric",
|
22 |
+
"qconfig": "x86",
|
23 |
+
"group_size": 128,
|
24 |
+
"damp_percent": 0.1,
|
25 |
+
"save_load_fn": "bitsandbytes"
|
26 |
+
}
|
27 |
+
}
|