File size: 6,946 Bytes
199ec83
9675e3a
199ec83
 
 
 
9675e3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e957847
996004f
 
b005c3f
996004f
62afc51
312ab2a
996004f
 
199ec83
 
 
 
996004f
f802024
73df4a0
c165969
2ae00be
f802024
73df4a0
199ec83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
996004f
 
 
 
 
 
 
 
 
 
 
 
9675e3a
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
---
license: apache-2.0
library_name: transformers
tags:
- mergekit
- merge
base_model:
- openchat/openchat-3.5-0106
model-index:
- name: OpenChat-3.5-0106_BlockExpansion-36Layers-End
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 59.76
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Pretergeek/OpenChat-3.5-0106_BlockExpansion-36Layers-End
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 24.06
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Pretergeek/OpenChat-3.5-0106_BlockExpansion-36Layers-End
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 6.8
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Pretergeek/OpenChat-3.5-0106_BlockExpansion-36Layers-End
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 7.61
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Pretergeek/OpenChat-3.5-0106_BlockExpansion-36Layers-End
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 11.78
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Pretergeek/OpenChat-3.5-0106_BlockExpansion-36Layers-End
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 25.44
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Pretergeek/OpenChat-3.5-0106_BlockExpansion-36Layers-End
      name: Open LLM Leaderboard
---
<p align="center">
  <a href="https://ko-fi.com/pretergeek">Buy me a Ko-Fi</a><a href="https://patreon.com/Pretergeek">Support my work using Patreon</a>
</p>

# OpenChat-3.5-0106_BlockExpansion-36Layers-End

This is NOT your usual frankenmerge created using [mergekit](https://github.com/cg123/mergekit).

## Merge Details
### Merge Method

This model was merged using the passthrough merge method, but employing a variation of the Block Expansion method described in the paper [LLaMA Pro: Progressive LLaMA with Block Expansion](https://arxiv.org/abs/2401.02415).

The authors of the paper added new layers interleaved in between the original layers of the model, setting the parameters of the o_proj and down_proj layers to zero. This effectively adds layers that will just output their input (as if they were "transparent") allowing the model to remain functional even without further training. These new layers can then be targeted during training or fine-tuning without risking catastrophic forgetting, if you follow the author's training method to freeze the original layers and only train the new layers.

I used the same method but added the new layers to the end of the model. My rationale is that the level of abstraction increases with each layer of the model. So, while new layers spread along the original layers will help the model to learn new tasks, adding layers to the end of the model and then re-training/fine-tuning the model on tasks it already performs well could improve the models understanding of those task and perform them better by employing more complex reasoning.

This model has not yet received additional training, so it should perform close to the original model. Evaluations are pending and will be added when available.

### Models Merged

The following models were included in the merge:
* [openchat/openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106)

### Configuration

The following YAML configuration was used to produce this model:

```yaml
slices:
  - sources:
    - model: openchat/openchat-3.5-0106
      layer_range: [0, 32]
  - sources:
    - model: openchat/openchat-3.5-0106
      layer_range: [31, 32]
      parameters:
        scale:
          - filter: o_proj
            value: 0.0
          - filter: down_proj
            value: 0.0
          - value: 1.0
  - sources:
    - model: openchat/openchat-3.5-0106
      layer_range: [31, 32]
      parameters:
        scale:
          - filter: o_proj
            value: 0.0
          - filter: down_proj
            value: 0.0
          - value: 1.0
  - sources:
    - model: openchat/openchat-3.5-0106
      layer_range: [31, 32]
      parameters:
        scale:
          - filter: o_proj
            value: 0.0
          - filter: down_proj
            value: 0.0
          - value: 1.0
  - sources:
    - model: openchat/openchat-3.5-0106
      layer_range: [31, 32]
      parameters:
        scale:
          - filter: o_proj
            value: 0.0
          - filter: down_proj
            value: 0.0
          - value: 1.0
merge_method: passthrough
dtype: bfloat16

```

## Citation
```
@misc{wu2024llamaproprogressivellama,
      title={LLaMA Pro: Progressive LLaMA with Block Expansion}, 
      author={Chengyue Wu and Yukang Gan and Yixiao Ge and Zeyu Lu and Jiahao Wang and Ye Feng and Ying Shan and Ping Luo},
      year={2024},
      eprint={2401.02415},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2401.02415}, 
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Pretergeek__OpenChat-3.5-0106_BlockExpansion-36Layers-End)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |22.57|
|IFEval (0-Shot)    |59.76|
|BBH (3-Shot)       |24.06|
|MATH Lvl 5 (4-Shot)| 6.80|
|GPQA (0-shot)      | 7.61|
|MuSR (0-shot)      |11.78|
|MMLU-PRO (5-shot)  |25.44|