opus-mt-tr-en-finetuned-tr-to-en
This model is a fine-tuned version of Helsinki-NLP/opus-mt-tr-en on the opus_infopankki dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6321
- Bleu: 56.617
- Gen Len: 13.5983
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Bleu |
Gen Len |
No log |
1.0 |
241 |
1.2487 |
41.0053 |
13.0461 |
No log |
2.0 |
482 |
1.1630 |
43.1077 |
13.0386 |
1.4091 |
3.0 |
723 |
1.0992 |
44.6583 |
13.0445 |
1.4091 |
4.0 |
964 |
1.0463 |
45.5931 |
13.0289 |
1.2325 |
5.0 |
1205 |
1.0012 |
46.7039 |
12.9998 |
1.2325 |
6.0 |
1446 |
0.9610 |
47.6783 |
13.0274 |
1.1284 |
7.0 |
1687 |
0.9262 |
48.622 |
12.9866 |
1.1284 |
8.0 |
1928 |
0.8939 |
48.4984 |
13.5762 |
1.0486 |
9.0 |
2169 |
0.8642 |
49.1496 |
13.5918 |
1.0486 |
10.0 |
2410 |
0.8391 |
49.8875 |
13.5905 |
0.9866 |
11.0 |
2651 |
0.8150 |
50.6447 |
13.5803 |
0.9866 |
12.0 |
2892 |
0.7941 |
51.2059 |
13.5731 |
0.9362 |
13.0 |
3133 |
0.7741 |
51.7071 |
13.5754 |
0.9362 |
14.0 |
3374 |
0.7564 |
52.4185 |
13.5781 |
0.8928 |
15.0 |
3615 |
0.7398 |
53.0814 |
13.5744 |
0.8928 |
16.0 |
3856 |
0.7247 |
53.5711 |
13.5783 |
0.8598 |
17.0 |
4097 |
0.7111 |
54.0559 |
13.568 |
0.8598 |
18.0 |
4338 |
0.6988 |
54.5188 |
13.5598 |
0.8274 |
19.0 |
4579 |
0.6876 |
54.78 |
13.5765 |
0.8274 |
20.0 |
4820 |
0.6780 |
55.1494 |
13.5762 |
0.8086 |
21.0 |
5061 |
0.6688 |
55.5813 |
13.5788 |
0.8086 |
22.0 |
5302 |
0.6610 |
55.6403 |
13.5796 |
0.7878 |
23.0 |
5543 |
0.6539 |
55.7731 |
13.5989 |
0.7878 |
24.0 |
5784 |
0.6483 |
55.9956 |
13.593 |
0.7718 |
25.0 |
6025 |
0.6432 |
56.2303 |
13.5904 |
0.7718 |
26.0 |
6266 |
0.6390 |
56.4825 |
13.5975 |
0.7633 |
27.0 |
6507 |
0.6360 |
56.5334 |
13.5958 |
0.7633 |
28.0 |
6748 |
0.6338 |
56.5357 |
13.5965 |
0.7633 |
29.0 |
6989 |
0.6325 |
56.5862 |
13.5974 |
0.7584 |
30.0 |
7230 |
0.6321 |
56.617 |
13.5983 |
Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0
- Datasets 2.3.2
- Tokenizers 0.12.1