Edit model card

opus-mt-ar-en-finetuned-ar-to-en

This model is a fine-tuned version of Helsinki-NLP/opus-mt-ar-en on the opus_infopankki dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7636
  • Bleu: 53.5086
  • Gen Len: 13.5728

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
No log 1.0 278 1.5114 35.2767 14.2084
1.6677 2.0 556 1.4025 37.5243 14.0245
1.6677 3.0 834 1.3223 39.4262 13.8101
1.4743 4.0 1112 1.2567 40.7045 13.8533
1.4743 5.0 1390 1.2001 41.8356 13.8083
1.3428 6.0 1668 1.1504 43.2448 13.6958
1.3428 7.0 1946 1.1072 44.177 13.6783
1.2595 8.0 2224 1.0701 45.17 13.6587
1.1829 9.0 2502 1.0345 45.9612 13.6706
1.1829 10.0 2780 1.0042 46.9009 13.6236
1.1188 11.0 3058 0.9760 47.7478 13.6205
1.1188 12.0 3336 0.9505 48.3082 13.6283
1.0735 13.0 3614 0.9270 48.9782 13.6203
1.0735 14.0 3892 0.9060 49.5541 13.6311
1.0269 15.0 4170 0.8869 49.9905 13.6222
1.0269 16.0 4448 0.8700 50.4806 13.6047
0.9983 17.0 4726 0.8538 50.9186 13.6159
0.9647 18.0 5004 0.8398 51.3492 13.6146
0.9647 19.0 5282 0.8271 51.7219 13.5275
0.9398 20.0 5560 0.8156 52.0177 13.5756
0.9398 21.0 5838 0.8053 52.3619 13.5807
0.9206 22.0 6116 0.7963 52.6051 13.5652
0.9206 23.0 6394 0.7885 52.8322 13.5669
0.9012 24.0 6672 0.7818 52.9402 13.5701
0.9012 25.0 6950 0.7762 53.1182 13.5695
0.8965 26.0 7228 0.7717 53.1596 13.5612
0.8836 27.0 7506 0.7681 53.3116 13.5719
0.8836 28.0 7784 0.7656 53.4399 13.5758
0.8777 29.0 8062 0.7642 53.4805 13.5737
0.8777 30.0 8340 0.7636 53.5086 13.5728

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0
  • Datasets 2.3.2
  • Tokenizers 0.12.1
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train PontifexMaximus/Arabic2

Evaluation results