Gigatrue Finetunes
Collection
3 items
•
Updated
This model is a fine-tuned version of google/mt5-small on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.5063 | 0.1015 | 3000 | 2.3075 |
2.998 | 0.2030 | 6000 | 2.2417 |
2.9368 | 0.3044 | 9000 | 2.2237 |
2.9102 | 0.4059 | 12000 | 2.2064 |
2.8894 | 0.5074 | 15000 | 2.2052 |
2.8837 | 0.6089 | 18000 | 2.1945 |
2.8756 | 0.7104 | 21000 | 2.1984 |
2.8718 | 0.8119 | 24000 | 2.1881 |
2.868 | 0.9133 | 27000 | 2.1868 |
2.8644 | 1.0148 | 30000 | 2.1816 |
2.8644 | 1.1163 | 33000 | 2.1815 |
2.8566 | 1.2178 | 36000 | 2.1785 |
2.858 | 1.3193 | 39000 | 2.1745 |
2.8558 | 1.4207 | 42000 | 2.1784 |
2.8559 | 1.5222 | 45000 | 2.1775 |
2.85 | 1.6237 | 48000 | 2.1783 |
2.8521 | 1.7252 | 51000 | 2.1777 |
2.8488 | 1.8267 | 54000 | 2.1782 |
2.8501 | 1.9282 | 57000 | 2.1760 |
2.8521 | 2.0296 | 60000 | 2.1773 |
2.8526 | 2.1311 | 63000 | 2.1764 |
2.8494 | 2.2326 | 66000 | 2.1774 |
2.8501 | 2.3341 | 69000 | 2.1765 |
2.8489 | 2.4356 | 72000 | 2.1771 |
2.8501 | 2.5370 | 75000 | 2.1763 |
2.8506 | 2.6385 | 78000 | 2.1762 |
2.8472 | 2.7400 | 81000 | 2.1762 |
2.8512 | 2.8415 | 84000 | 2.1758 |
2.8494 | 2.9430 | 87000 | 2.1758 |