File size: 2,133 Bytes
8a278f6
 
 
9c774e3
 
196a482
9c774e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196a482
 
9c774e3
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
---
license: mit
---
# Model Card for pre-trained EEGNet models on mental imagery datasets

Collection of 12 neural networks trained for motor imagery decoding along with evaluation results. 

## Model Details

- **Architecture:** [EEGNetv4](https://braindecode.org/stable/generated/braindecode.models.EEGNetv4.html) by  [Lawhern et. al (2018)](https://doi.org/10.1088/1741-2552/aace8c).


## How to Get Started with the Model

- **Download and load in memory:**
```python
import pickle

# download the model from the hub:
path_kwargs = hf_hub_download(
    repo_id='PierreGtch/EEGNetv4',
    filename='EEGNetv4_Lee2019_MI/kwargs.pkl',
)
path_params = hf_hub_download(
    repo_id='PierreGtch/EEGNetv4',
    filename='EEGNetv4_Lee2019_MI/model-params.pkl',
)
with open(path_kwargs, 'rb') as f:
    kwargs = pickle.load(f)
module_cls = kwargs['module_cls']
module_kwargs = kwargs['module_kwargs']

# load the model with pre-trained weights:
torch_module = module_cls(**module_kwargs)
```
- **Details:** more details and potential use-case scenarios can be found in the notebook [here](https://neurotechlab.socsci.ru.nl/resources/pretrained_imagery_models/)


## Training Details

- **Training dataset:** Each model was trained on the dataset with corresponding name in the MOABB library (see [datasets list](https://neurotechx.github.io/moabb/dataset_summary.html#motor-imagery)).
- **Details:** For details on the training procedure, please refer to the poster [here](https://neurotechlab.socsci.ru.nl/resources/pretrained_imagery_models/).

## Evaluation

- **Cross-dataset transfer:** The transfer abilities of the models was tested on the same datasets as for training.
- **Details:** The evaluation procedure can be found in the poster [here](https://neurotechlab.socsci.ru.nl/resources/pretrained_imagery_models/) and the article *Transfer Learning between Motor Imagery datasets using Deep Learning*.
- **Results:** The evaluation results can be found under the [`results/`](https://huggingface.co/PierreGtch/EEGNetv4/tree/main/results) folder.

## Model Card Authors

- **Modedels training and results by:** Pierre Guetschel