PierreGtch commited on
Commit
9c774e3
1 Parent(s): 309c2e0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -0
README.md CHANGED
@@ -1,3 +1,52 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+ # Model Card for pre-trained EEGNet models on mental imagery datasets
5
+
6
+ Collection of 12 neural networks trained for motor imagery decoding.
7
+
8
+ ## Model Details
9
+
10
+ - **Architecture:** [EEGNetv4](https://braindecode.org/stable/generated/braindecode.models.EEGNetv4.html) by [Lawhern et. al (2018)](https://doi.org/10.1088/1741-2552/aace8c).
11
+
12
+
13
+ ## How to Get Started with the Model
14
+
15
+ - **Download and load in memory:**
16
+ ```python
17
+ import pickle
18
+
19
+ # download the model from the hub:
20
+ path_kwargs = hf_hub_download(
21
+ repo_id='PierreGtch/EEGNetv4',
22
+ filename='EEGNetv4_Lee2019_MI/kwargs.pkl',
23
+ )
24
+ path_params = hf_hub_download(
25
+ repo_id='PierreGtch/EEGNetv4',
26
+ filename='EEGNetv4_Lee2019_MI/model-params.pkl',
27
+ )
28
+ with open(path_kwargs, 'rb') as f:
29
+ kwargs = pickle.load(f)
30
+ module_cls = kwargs['module_cls']
31
+ module_kwargs = kwargs['module_kwargs']
32
+
33
+ # load the model with pre-trained weights:
34
+ torch_module = module_cls(**module_kwargs)
35
+ ```
36
+ - **Details:** more details and potential use-case scenarios can be found in the notebook [here](https://neurotechlab.socsci.ru.nl/resources/pretrained_imagery_models/)
37
+
38
+
39
+ ## Training Details
40
+
41
+ - **Training dataset:** Each model was trained on the dataset with corresponding name in the MOABB library (see [datasets list](https://neurotechx.github.io/moabb/dataset_summary.html#motor-imagery)).
42
+ - **Details:** For details on the training procedure, please refer to the poster [here](https://neurotechlab.socsci.ru.nl/resources/pretrained_imagery_models/).
43
+
44
+ ## Evaluation
45
+
46
+ - **Cross-dataset transfer:** The transfer abilities of the models was tested on the same datasets as for training.
47
+ - **Details:** The results can be found on the poster [here](https://neurotechlab.socsci.ru.nl/resources/pretrained_imagery_models/).
48
+
49
+ ## Model Card Authors
50
+
51
+ - **Modedels training and results by:** Pierre Guetschel
52
+