Link to Github Release

4xHFA2kLUDVAESwinIR_light

Name: 4xHFA2kLUDVAESwinIR_light
Author: Philip Hofmann
Release Date: 10.06.2023
License: CC BY 4.0
Network: SwinIR
Arch Option: SwinIR-light
Scale: 4
Purpose: An lightweight anime 4x upscaling model with realistic degradations, based on musl's HFA2k_LUDVAE dataset
Iterations: 350,000
batch_size: 3
HR_size: 256
Epoch: 99 (require iter number per epoch: 3424)
Dataset: HFA2kLUDVAE
Number of train images: 10270
OTF Training: No
Pretrained_Model_G: None

Description: 4x lightweight anime upscaler with realistic degradations (compression, noise, blur). Visual outputs can be found on https://github.com/Phhofm/models/tree/main/4xHFA2kLUDVAE_results, together with timestamps and metrics to compare inference speed on the val set with other trained models/networks on this dataset.

image
image
image

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Spaces using Phips/4xHFA2kLUDVAESwinIR_light 3