File size: 52,065 Bytes
d59f795
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
import json
import unittest
import os
from collections import Counter
from typing import Dict, List, Optional, Sized, Tuple, Union, Any

import torch
import numpy as np
from tokenizers import AddedToken
from transformers import PreTrainedTokenizer
from transformers.tokenization_utils_base import (
    BatchEncoding,
    EncodedInput,
    TruncationStrategy,
)
from transformers.utils import logging
from transformers.utils.generic import PaddingStrategy, TensorType, to_py_obj

from .ngme import ngrams as ngram_tokenizer

logger = logging.get_logger(__name__)


def load_vocab(vocab_file):
    """Loads a vocabulary file into a dictionary."""
    with open(vocab_file, "r", encoding="utf-8") as f:
        vocab = json.load(f)
    return vocab


def all_same(items):
    return all(x == items[0] for x in items)


class NGMETokenizer(PreTrainedTokenizer):
    model_input_names = ["input_ids", "attention_mask"]
    vocab_file = "vocab.json"
    vocab_files_names = {"vocab_file": vocab_file}

    def __init__(
        self,
        vocab_file,
        eos_token="\n",
        pad_token="\n",
        unk_token="<unk>",
        eod_token="<eod>",
        **kwargs,
    ):
        super().__init__(
            eos_token=eos_token, pad_token=pad_token, unk_token=unk_token, **kwargs
        )

        eos_token = (
            AddedToken(
                eos_token,
                lstrip=False,
                rstrip=False,
            )
            if isinstance(eos_token, str)
            else eos_token
        )
        pad_token = (
            AddedToken(
                pad_token,
                lstrip=False,
                rstrip=False,
            )
            if isinstance(pad_token, str)
            else pad_token
        )
        unk_token = (
            AddedToken(
                unk_token,
                lstrip=False,
                rstrip=False,
            )
            if isinstance(unk_token, str)
            else unk_token
        )

        self._ngram2word2idx = {}
        self._ngram2idx2word = {}
        self._current_max_idx = 0
        self._frequencies: Counter = Counter()

        self._load_from_file(vocab_file)

        for n in range(2, self.ngram + 1):
            self.model_input_names.append(f"ngram_{n}_sequence")

        # TODO: COuld also be whitespace if n+1gram dont contain it
        self._special_token = "Ġ"
        assert self._special_token not in self._ngram2word2idx[1]

    def __call__(self, *args, **kwargs) -> BatchEncoding:
        if "return_ngram_sequences" in kwargs:
            return_ngram_sequences = kwargs["return_ngram_sequences"]
            del kwargs["return_ngram_sequences"]
        else:
            return_ngram_sequences = False

        # We could check the args and kwargs beforehand and apply extra ngram sequences based on it, but
        # we let HF handle all logic and reverse take the char sequence from the ids
        batch_encoding = super().__call__(*args, **kwargs)

        if return_ngram_sequences:
            ngram_sequences = self.create_ngram_sequences(args[0])
            # NOTE: This is pretty hard coded, lets just throw an error if the user wants to use it differently

            if "padding" in kwargs:
                if kwargs["padding"] == "max_length":
                    padded_sequences = {}
                    for n_key, sequence in ngram_sequences.items():
                        padded_sequences[n_key] = self.pad_sequence_right(
                            sequence,
                            len(batch_encoding["input_ids"][0]),
                            self.pad_token_id,
                        )

                    ngram_sequences = padded_sequences
                elif kwargs["padding"] == "longest":
                    padded_sequences = {}
                    for n_key, sequence in ngram_sequences.items():
                        padded_sequences[n_key] = self.pad_sequence_right(
                            sequence,
                            max([len(seq) for seq in sequence]),
                            self.pad_token_id,
                        )
                    ngram_sequences = padded_sequences

                else:
                    raise ValueError(
                        f"Padding {kwargs['padding']} not supported for ngram sequences"
                    )

            if "truncation" in kwargs and kwargs["truncation"]:
                truncated_sequences = {}
                for n_key, sequence in ngram_sequences.items():
                    truncated_sequences[n_key] = self.truncate_sequence_right(
                        sequence, len(batch_encoding["input_ids"][0])
                    )
                ngram_sequences = truncated_sequences

            batch_encoding.update(ngram_sequences)

        if "return_tensors" in kwargs:
            batch_encoding.convert_to_tensors(kwargs["return_tensors"])

        return batch_encoding

    def pad_sequence_right(
        self, batched_sequence: List[List[int]], padding_length: int, padding_value: int
    ) -> List[List[int]]:
        padded_sequence = []
        for sequence in batched_sequence:
            padded_sequence.append(
                sequence + [padding_value] * (padding_length - len(sequence))
            )
        return padded_sequence

    def truncate_sequence_right(
        self, batched_sequence: List[List[int]], max_length: int
    ) -> List[List[int]]:
        truncated_sequence = []
        for sequence in batched_sequence:
            truncated_sequence.append(sequence[:max_length])
        return truncated_sequence

    def create_ngram_sequences(self, char_sequences: List[str]) -> Dict[str, Any]:
        ngram_sequences_output = {}

        if isinstance(char_sequences, str):
            char_sequences = [char_sequences]

        for n in range(2, self.ngram + 1):
            ngram_sequences = []
            for char_sequence in char_sequences:
                ngrams = ["".join(ngram) for ngram in ngram_tokenizer(char_sequence, n)]
                # Fill in the front with existign unigrams, for same length and
                # because the timestep t should not look ahead
                ngrams = list(char_sequence[: n - 1]) + ngrams
                encoded_ngrams = self.encode(ngrams) if len(ngrams) > 0 else []
                ngram_sequences.append(encoded_ngrams)

            ngram_sequences_output[f"label_gram_{n}_sequence"] = ngram_sequences

        return ngram_sequences_output

    def _seq_size(self, encoded) -> Union[int, List[int]]:
        if isinstance(encoded, torch.Tensor):
            encoded = encoded.tolist()

        if isinstance(encoded[0], list):
            return [len(enc) for enc in encoded]

        return len(encoded)

    def _load_from_file(self, filename: str):
        """Loads a dictionary from a file."""
        vocab_file = load_vocab(filename)
        self.ngram = vocab_file["ngram"]

        if "\n" not in vocab_file["vocab"]:
            self._add_ngram("\n", 1)

        for token in vocab_file["vocab"]:
            self._add_ngram(token["token"], token["ngram"])
            self._frequencies.update({token["token"]: token["frequency"]})

    def _add_ngram(self, word, ngram: int) -> int:
        """Add a new n-gram token to the dictionary."""
        self._frequencies.update({word: 1})

        if ngram not in self._ngram2idx2word:
            self._ngram2idx2word[ngram] = {self._current_max_idx: word}
            self._ngram2word2idx[ngram] = {word: self._current_max_idx}
            self._current_max_idx += 1
        else:
            if word not in self._ngram2word2idx[ngram]:
                self._ngram2idx2word[ngram][self._current_max_idx] = word
                self._ngram2word2idx[ngram][word] = self._current_max_idx
                self._current_max_idx += 1

        return self._ngram2word2idx[ngram][word]

    def _is_contiguous(self):
        vocab_size = len(self)
        return list(range(vocab_size)) == [idx for idx, token in self._get_all_tokens()]

    def _get_all_tokens(self):
        """Returns all tokens in the dictionary."""
        for ngram in range(1, self.ngram + 1):
            for idx, token in self._ngram2idx2word[ngram].items():
                yield idx, token

    def save_vocabulary(
        self, save_directory: str, filename_prefix: Optional[str] = None
    ) -> Tuple[str]:
        filename = os.path.join(
            save_directory,
            (filename_prefix + "-" if filename_prefix else ""),
            self.vocab_file,
        )

        index = 0
        vocab = {"ngram": self.ngram, "vocab": []}

        for ngram in range(1, self.ngram + 1):
            for idx, token in self._ngram2idx2word[ngram].items():
                if index != idx:
                    index = idx

                try:
                    frequency = self._frequencies[token]
                except KeyError:
                    frequency = -1

                index += 1
                vocab["vocab"].append(
                    {
                        "token": token,
                        "index": idx,
                        "frequency": frequency,
                        "ngram": ngram,
                    }
                )

        with open(filename, "w", encoding="utf-8") as writer:
            json.dump(vocab, writer, indent=4, ensure_ascii=False)

        return (filename,)

    @property
    def vocab_size(self) -> int:
        return self._current_max_idx

    def _tokenize(self, text: str) -> List[str]:
        return list(text)

    def get_idx(self, token: str, ngram: Optional[int] = None) -> int:
        if ngram:
            if token in self._ngram2word2idx[ngram]:
                return self._ngram2word2idx[ngram][token]
            else:
                return self._ngram2word2idx[1]["<unk>"]

        for ngram in range(1, self.ngram + 1):
            if token in self._ngram2word2idx[ngram]:
                return self._ngram2word2idx[ngram][token]

        return self._ngram2word2idx[1]["<unk>"]

    def _convert_ngram_tokens_to_ids(self, ngram_tokens: List[str]) -> List[int]:
        return [self.get_idx(token) for token in ngram_tokens]

    def convert_tokens_to_ids(self, tokens: List[str]):
        if not tokens:
            return []

        if isinstance(tokens, str):
            return self.get_idx(tokens)

        return self._convert_ngram_tokens_to_ids(tokens)

    def _convert_id_to_token(self, index: int) -> str:
        return self.get_item_for_index(index)

    def get_item_for_index(self, idx) -> str:
        """Return the token for a given index."""
        for idxs in self._ngram2idx2word.values():
            if idx in idxs:
                return idxs[idx]

        return self.unk_token

    def convert_tokens_to_string(self, tokens):
        return "".join(tokens)

    def create_weight_tensor(self) -> torch.Tensor:
        unked_freqs = self._frequencies.most_common()

        t = torch.ones(len(self))

        for token, freq in unked_freqs:
            t[self._ngram2word2idx[self._token_to_n_order(token)][token]] = freq

        # Ensure the only whitespace character is weighted
        t[self._ngram2word2idx[1][" "]] = 1.0

        max_t = max(t)

        normed_weights = torch.tensor([(1 - (x / (max_t + 1))).item() for x in t])

        marker_tokens = [self.get_idx("<unk>", n) for n in range(1, self.ngram + 1)]
        marker_tokens.extend(
            [self.get_idx("<start>", n) for n in range(1, self.ngram + 1)]
        )
        # Instead of explicit ignore indexes, we use the weight vector and set target idxs to 0
        for marker in marker_tokens:
            normed_weights[marker] = 0

        return normed_weights

    def _token_to_n_order(self, token: str) -> int:
        """Get N-gram order for a token"""
        for n_gram, word2idx in self._ngram2word2idx.items():
            if token in word2idx:
                return n_gram

        return 0


class GPTNGMETokenizer(PreTrainedTokenizer):
    model_input_names = ["input_ids", "attention_mask"]
    vocab_file = "vocab.json"
    vocab_files_names = {"vocab_file": vocab_file}

    def __init__(
        self, vocab_file, eos_token="\n", pad_token="\n", unk_token="<unk>", **kwargs
    ):
        eos_token = (
            AddedToken(
                eos_token,
                lstrip=False,
                rstrip=False,
            )
            if isinstance(eos_token, str)
            else eos_token
        )
        pad_token = (
            AddedToken(
                pad_token,
                lstrip=False,
                rstrip=False,
            )
            if isinstance(pad_token, str)
            else pad_token
        )
        unk_token = (
            AddedToken(
                unk_token,
                lstrip=False,
                rstrip=False,
            )
            if isinstance(unk_token, str)
            else unk_token
        )

        super().__init__(
            eos_token=eos_token, pad_token=pad_token, unk_token=unk_token, **kwargs
        )

        self._ngram2word2idx = {}
        self._ngram2idx2word = {}
        self._current_max_idx = 0
        self._frequencies: Counter = Counter()

        self._load_from_file(vocab_file)

    def _load_from_file(self, filename: str):
        """Loads a dictionary from a file."""
        vocab_file = load_vocab(filename)
        self.ngram = vocab_file["ngram"]

        if "\n" not in vocab_file["vocab"]:
            self._add_ngram("\n", 1)

        for token in vocab_file["vocab"]:
            self._add_ngram(token["token"], token["ngram"])
            self._frequencies.update({token["token"]: token["frequency"]})

    def _add_ngram(self, word, ngram: int) -> int:
        """Add a new n-gram token to the dictionary."""
        self._frequencies.update({word: 1})

        if ngram not in self._ngram2idx2word:
            self._ngram2idx2word[ngram] = {self._current_max_idx: word}
            self._ngram2word2idx[ngram] = {word: self._current_max_idx}
            self._current_max_idx += 1
        else:
            if word not in self._ngram2word2idx[ngram]:
                self._ngram2idx2word[ngram][self._current_max_idx] = word
                self._ngram2word2idx[ngram][word] = self._current_max_idx
                self._current_max_idx += 1

        return self._ngram2word2idx[ngram][word]

    def _is_contiguous(self):
        vocab_size = len(self)
        return list(range(vocab_size)) == [idx for idx, token in self._get_all_tokens()]

    def _get_all_tokens(self):
        """Returns all tokens in the dictionary."""
        for ngram in range(1, self.ngram + 1):
            for idx, token in self._ngram2idx2word[ngram].items():
                yield idx, token

    def save_vocabulary(
        self, save_directory: str, filename_prefix: Optional[str] = None
    ) -> Tuple[str]:
        filename = os.path.join(
            save_directory,
            (filename_prefix + "-" if filename_prefix else ""),
            self.vocab_file,
        )

        index = 0
        vocab = {"ngram": self.ngram, "vocab": []}

        for ngram in range(1, self.ngram + 1):
            for idx, token in self._ngram2idx2word[ngram].items():
                if index != idx:
                    index = idx

                try:
                    frequency = self._frequencies[token]
                except KeyError:
                    frequency = -1

                index += 1
                vocab["vocab"].append(
                    {
                        "token": token,
                        "index": idx,
                        "frequency": frequency,
                        "ngram": ngram,
                    }
                )

        with open(filename, "w", encoding="utf-8") as writer:
            json.dump(vocab, writer, indent=4, ensure_ascii=False)

        return (filename,)

    @property
    def vocab_size(self) -> int:
        return self._current_max_idx

    def retokenize(self, input_ids, *args, **kwargs):
        decoded = self.convert_ids_to_tokens(input_ids)
        sequence = "".join(decoded)
        new_decoded = self(sequence, *args, **kwargs).input_ids
        return new_decoded

    def _tokenize(self, text):
        ngram_sequences = []
        for n in range(1, self.ngram + 1):
            words = ["<start>" for _ in range(1, n)]
            words.extend(list(text))

            tokens = []
            for i, word in enumerate(ngram_tokenizer(words, n)):
                if "<start>" in word:
                    word = [w for w in list(word) if w != "<start>"]
                tokens.append("".join(word))

            ngram_sequences.append(tokens)

        return ngram_sequences

    def get_idx(self, token: str, ngram: Optional[int] = None) -> int:
        if ngram:
            if token in self._ngram2word2idx[ngram]:
                return self._ngram2word2idx[ngram][token]
            else:
                return self._ngram2word2idx[1]["<unk>"]

        for ngram in range(1, self.ngram + 1):
            if token in self._ngram2word2idx[ngram]:
                return self._ngram2word2idx[ngram][token]

        return self._ngram2word2idx[1]["<unk>"]

    def _convert_ngram_tokens_to_ids(self, ngram_tokens: List[str]) -> List[int]:
        return [self.get_idx(token) for token in ngram_tokens]

    def convert_tokens_to_ids(self, tokens: List[List[str]]):
        if not tokens:
            return []

        if isinstance(tokens, str):
            return self.get_idx(tokens)

        return [
            self._convert_ngram_tokens_to_ids(ngram_tokens) for ngram_tokens in tokens
        ]

    def _convert_id_to_token(self, index: int) -> str:
        return self.get_item_for_index(index)

    def get_item_for_index(self, idx) -> str:
        """Return the token for a given index."""
        for idxs in self._ngram2idx2word.values():
            if idx in idxs:
                return idxs[idx]

        return self.unk_token

    def _decode(
        self, token_ids: List[List[int]], skip_special_tokens: bool = False, **kwargs
    ) -> str:
        return "".join(self.convert_ids_to_tokens(token_ids[0]))

    def debug_decode(self, token_ids: List[List[int]]):
        for n in range(1, self.ngram + 1):
            print(f"{n}-gram: {self.convert_ids_to_tokens(token_ids[n-1])}")

    def _pad(
        self,
        encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
        max_length: Optional[int] = None,
        padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
        pad_to_multiple_of: Optional[int] = None,
        return_attention_mask: Optional[bool] = None,
    ) -> dict:
        """
        Pad encoded inputs (on left/right and up to predefined length or max length in the batch)

        Args:
            encoded_inputs:
                Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
            max_length: maximum length of the returned list and optionally padding length (see below).
                Will truncate by taking into account the special tokens.
            padding_strategy: PaddingStrategy to use for padding.

                - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
                - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
                - PaddingStrategy.DO_NOT_PAD: Do not pad
                The tokenizer padding sides are defined in self.padding_side:

                    - 'left': pads on the left of the sequences
                    - 'right': pads on the right of the sequences
            pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
                This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
                `>= 7.5` (Volta).
            return_attention_mask:
                (optional) Set to False to avoid returning attention mask (default: set to model specifics)
        """
        # encoded_inputs == one sample -> List[List[int]]

        # Load from model defaults
        if return_attention_mask is None:
            return_attention_mask = "attention_mask" in self.model_input_names

        required_input = encoded_inputs[self.model_input_names[0]]
        # PHA: Check if we have a list of list of list, then we unpack
        if (
            len(required_input) != 0
            and isinstance(required_input[0], list)
            and isinstance(required_input[0][0], list)
        ):
            required_input = required_input[0]

        if padding_strategy == PaddingStrategy.LONGEST:
            max_length = len(required_input)

        if (
            max_length is not None
            and pad_to_multiple_of is not None
            and (max_length % pad_to_multiple_of != 0)
        ):
            max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of

        needs_to_be_padded = (
            padding_strategy != PaddingStrategy.DO_NOT_PAD
            and len(required_input[0]) != max_length
        )

        # Initialize attention mask if not present.
        if return_attention_mask and "attention_mask" not in encoded_inputs:
            if len(required_input) == 0:
                encoded_inputs["attention_mask"] = []
            else:
                encoded_inputs["attention_mask"] = [1] * len(required_input[0])

        if needs_to_be_padded:
            difference = max_length - len(required_input[0])

            if self.padding_side == "right":
                if return_attention_mask:
                    encoded_inputs["attention_mask"] = (
                        encoded_inputs["attention_mask"] + [0] * difference
                    )
                if "token_type_ids" in encoded_inputs:
                    encoded_inputs["token_type_ids"] = (
                        encoded_inputs["token_type_ids"]
                        + [self.pad_token_type_id] * difference
                    )
                if "special_tokens_mask" in encoded_inputs:
                    encoded_inputs["special_tokens_mask"] = (
                        encoded_inputs["special_tokens_mask"] + [1] * difference
                    )
                for i in range(len(encoded_inputs[self.model_input_names[0]])):
                    encoded_inputs[self.model_input_names[0]][i] = (
                        required_input[i] + [self.pad_token_id] * difference
                    )
            elif self.padding_side == "left":
                if return_attention_mask:
                    encoded_inputs["attention_mask"] = [
                        0
                    ] * difference + encoded_inputs["attention_mask"]
                if "token_type_ids" in encoded_inputs:
                    encoded_inputs["token_type_ids"] = [
                        self.pad_token_type_id
                    ] * difference + encoded_inputs["token_type_ids"]
                if "special_tokens_mask" in encoded_inputs:
                    encoded_inputs["special_tokens_mask"] = [
                        1
                    ] * difference + encoded_inputs["special_tokens_mask"]

                for i in range(len(encoded_inputs[self.model_input_names[0]])):
                    encoded_inputs[self.model_input_names[0]][i] = [
                        self.pad_token_id
                    ] * difference + required_input[i]
            else:
                raise ValueError("Invalid padding strategy:" + str(self.padding_side))

        return encoded_inputs

    def pad(
        self,
        encoded_inputs: Union[
            BatchEncoding,
            List[BatchEncoding],
            Dict[str, EncodedInput],
            Dict[str, List[EncodedInput]],
            List[Dict[str, EncodedInput]],
        ],
        padding: Union[bool, str, PaddingStrategy] = True,
        max_length: Optional[int] = None,
        pad_to_multiple_of: Optional[int] = None,
        return_attention_mask: Optional[bool] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        verbose: bool = True,
    ) -> BatchEncoding:
        """
        Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length
        in the batch.

        Padding side (left/right) padding token ids are defined at the tokenizer level (with `self.padding_side`,

        `self.pad_token_id` and `self.pad_token_type_id`).

        Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the
        text followed by a call to the `pad` method to get a padded encoding.

        <Tip>

        If the `encoded_inputs` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the
        result will use the same type unless you provide a different tensor type with `return_tensors`. In the case of
        PyTorch tensors, you will lose the specific device of your tensors however.

        </Tip>

        Args:
            encoded_inputs ([`BatchEncoding`], list of [`BatchEncoding`], `Dict[str, List[int]]`, `Dict[str, List[List[int]]` or `List[Dict[str, List[int]]]`):
                Tokenized inputs. Can represent one input ([`BatchEncoding`] or `Dict[str, List[int]]`) or a batch of
                tokenized inputs (list of [`BatchEncoding`], *Dict[str, List[List[int]]]* or *List[Dict[str,
                List[int]]]*) so you can use this method during preprocessing as well as in a PyTorch Dataloader
                collate function.

                Instead of `List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors), see
                the note above for the return type.
            padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
                 Select a strategy to pad the returned sequences (according to the model's padding side and padding
                 index) among:

                - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
                  sequence if provided).
                - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
                  acceptable input length for the model if that argument is not provided.
                - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
                  lengths).
            max_length (`int`, *optional*):
                Maximum length of the returned list and optionally padding length (see above).
            pad_to_multiple_of (`int`, *optional*):
                If set will pad the sequence to a multiple of the provided value.

                This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
                `>= 7.5` (Volta).
            return_attention_mask (`bool`, *optional*):
                Whether to return the attention mask. If left to the default, will return the attention mask according
                to the specific tokenizer's default, defined by the `return_outputs` attribute.

                [What are attention masks?](../glossary#attention-mask)
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors instead of list of python integers. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return Numpy `np.ndarray` objects.
            verbose (`bool`, *optional*, defaults to `True`):
                Whether or not to print more information and warnings.
        """

        # Problem: The pad function checks if the encoded_inputs is a list or not
        # If it is a list it assumes that we have batches
        # With ngme encoding the input is always a list

        # If we have a list of dicts, let's convert it in a dict of lists
        # We do this to allow using this method as a collate_fn function in PyTorch Dataloader
        if isinstance(encoded_inputs, (list, tuple)) and isinstance(
            encoded_inputs[0], Mapping
        ):
            encoded_inputs = {
                key: [example[key] for example in encoded_inputs]
                for key in encoded_inputs[0].keys()
            }

        # The model's main input name, usually `input_ids`, has be passed for padding
        if self.model_input_names[0] not in encoded_inputs:
            raise ValueError(
                "You should supply an encoding or a list of encodings to this method "
                f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}"
            )

        required_input = encoded_inputs[self.model_input_names[0]]

        if required_input is None or (
            isinstance(required_input, Sized) and len(required_input) == 0
        ):
            if return_attention_mask:
                encoded_inputs["attention_mask"] = []
            return encoded_inputs

        # If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects
        # and rebuild them afterwards if no return_tensors is specified
        # Note that we lose the specific device the tensor may be on for PyTorch

        first_element = required_input[0]
        # PHA: First element in ngme is a list of list
        if isinstance(first_element, (list, tuple)):
            # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
            for item in required_input:
                if len(item) != 0:
                    first_element = item[0]
                    break
        # At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do.
        if not isinstance(first_element, (int, list, tuple)):
            if is_tf_tensor(first_element):
                return_tensors = "tf" if return_tensors is None else return_tensors
            elif is_torch_tensor(first_element):
                return_tensors = "pt" if return_tensors is None else return_tensors
            elif isinstance(first_element, np.ndarray):
                return_tensors = "np" if return_tensors is None else return_tensors
            else:
                raise ValueError(
                    f"type of {first_element} unknown: {type(first_element)}. "
                    "Should be one of a python, numpy, pytorch or tensorflow object."
                )

            for key, value in encoded_inputs.items():
                encoded_inputs[key] = to_py_obj(value)

        # Convert padding_strategy in PaddingStrategy
        padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies(
            padding=padding, max_length=max_length, verbose=verbose
        )

        required_input = encoded_inputs[self.model_input_names[0]]

        if required_input:
            if isinstance(required_input[0], (list, tuple)):
                if len(required_input[0]) > 0 and not isinstance(
                    required_input[0][0], (list, tuple)
                ):
                    encoded_inputs = self._pad(
                        encoded_inputs,
                        max_length=max_length,
                        padding_strategy=padding_strategy,
                        pad_to_multiple_of=pad_to_multiple_of,
                        return_attention_mask=return_attention_mask,
                    )
                    return BatchEncoding(encoded_inputs, tensor_type=return_tensors)

        batch_size = len(required_input)
        assert all(
            len(v) == batch_size for v in encoded_inputs.values()
        ), "Some items in the output dictionary have a different batch size than others."

        if padding_strategy == PaddingStrategy.LONGEST:
            max_length = max(len(inputs[0]) for inputs in required_input)
            padding_strategy = PaddingStrategy.MAX_LENGTH

        batch_outputs = {}
        for i in range(batch_size):
            inputs = dict((k, v[i]) for k, v in encoded_inputs.items())
            outputs = self._pad(
                inputs,
                max_length=max_length,
                padding_strategy=padding_strategy,
                pad_to_multiple_of=pad_to_multiple_of,
                return_attention_mask=return_attention_mask,
            )

            for key, value in outputs.items():
                if key not in batch_outputs:
                    batch_outputs[key] = []
                batch_outputs[key].append(value)

        return BatchEncoding(batch_outputs, tensor_type=return_tensors)

    def prepare_for_model(
        self,
        ids: List[int],
        pair_ids: Optional[List[int]] = None,
        add_special_tokens: bool = True,
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Union[bool, str, TruncationStrategy] = None,
        max_length: Optional[int] = None,
        stride: int = 0,
        pad_to_multiple_of: Optional[int] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
        prepend_batch_axis: bool = False,
        **kwargs,
    ) -> BatchEncoding:
        """
        Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
        adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
        manages a moving window (with user defined stride) for overflowing tokens. Please Note, for *pair_ids*
        different than `None` and *truncation_strategy = longest_first* or `True`, it is not possible to return
        overflowing tokens. Such a combination of arguments will raise an error.
        Args:
            ids (`List[int]`):
                Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
                `convert_tokens_to_ids` methods.
            pair_ids (`List[int]`, *optional*):
                Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
                and `convert_tokens_to_ids` methods.
        """

        # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
        (
            padding_strategy,
            truncation_strategy,
            max_length,
            kwargs,
        ) = self._get_padding_truncation_strategies(
            padding=padding,
            truncation=truncation,
            max_length=max_length,
            pad_to_multiple_of=pad_to_multiple_of,
            verbose=verbose,
            **kwargs,
        )

        pair = bool(pair_ids is not None)

        if len(ids) == 0:
            len_ids = 0
        else:
            len_ids = len(ids[0])

        if pair and len(pair_ids) == 0:
            len_pair_ids = 0
        elif pair and len(pair_ids) > 0:
            len_pair_ids = len(pair_ids[0])
        else:
            len_pair_ids = 0

        if return_token_type_ids and not add_special_tokens:
            raise ValueError(
                "Asking to return token_type_ids while setting add_special_tokens to False "
                "results in an undefined behavior. Please set add_special_tokens to True or "
                "set return_token_type_ids to None."
            )

        if (
            return_overflowing_tokens
            and truncation_strategy == TruncationStrategy.LONGEST_FIRST
            and pair_ids is not None
        ):
            raise ValueError(
                "Not possible to return overflowing tokens for pair of sequences with the "
                "`longest_first`. Please select another truncation strategy than `longest_first`, "
                "for instance `only_second` or `only_first`."
            )

        # Load from model defaults
        if return_token_type_ids is None:
            return_token_type_ids = "token_type_ids" in self.model_input_names
        if return_attention_mask is None:
            return_attention_mask = "attention_mask" in self.model_input_names

        encoded_inputs = {}

        # Compute the total size of the returned encodings
        total_len = (
            len_ids
            + len_pair_ids
            + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)
        )

        # Truncation: Handle max sequence length
        overflowing_tokens = []
        if (
            truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE
            and max_length
            and total_len > max_length
        ):
            ids, pair_ids, overflowing_tokens = self.truncate_sequences(
                ids,
                pair_ids=pair_ids,
                num_tokens_to_remove=total_len - max_length,
                truncation_strategy=truncation_strategy,
                stride=stride,
            )

        if return_overflowing_tokens:
            encoded_inputs["overflowing_tokens"] = overflowing_tokens
            encoded_inputs["num_truncated_tokens"] = total_len - max_length

        # Add special tokens
        if add_special_tokens:
            sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
            token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
        else:
            sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
            token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])

        # Build output dictionary
        encoded_inputs["input_ids"] = sequence
        if return_token_type_ids:
            encoded_inputs["token_type_ids"] = token_type_ids
        if return_special_tokens_mask:
            if add_special_tokens:
                encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(
                    ids, pair_ids
                )
            else:
                encoded_inputs["special_tokens_mask"] = [0] * len(sequence)

        # Check lengths
        self._eventual_warn_about_too_long_sequence(
            encoded_inputs["input_ids"], max_length, verbose
        )

        # Padding
        if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
            encoded_inputs = self.pad(
                encoded_inputs,
                max_length=max_length,
                padding=padding_strategy.value,
                pad_to_multiple_of=pad_to_multiple_of,
                return_attention_mask=return_attention_mask,
            )

        if return_length:
            encoded_inputs["length"] = len(encoded_inputs["input_ids"])

        batch_outputs = BatchEncoding(
            encoded_inputs,
            tensor_type=return_tensors,
            prepend_batch_axis=prepend_batch_axis,
        )

        return batch_outputs

    def build_inputs_with_special_tokens(
        self,
        token_ids_0: List[List[int]],
        token_ids_1: Optional[List[List[int]]] = None,
    ) -> List[List[int]]:
        """
        Concatenate nested ngram sequences.

        Args:
            token_ids_0 (`List[List[int]]`): The first tokenized sequence.
            token_ids_1 (`List[List[int]]`, *optional*): The second tokenized sequence.

        Returns:
            `List[List[int]]`: The model input with special tokens.
        """
        if token_ids_1 is None or len(token_ids_1) == 0:
            return token_ids_0

        if len(token_ids_0) == 0:
            return token_ids_1

        return np.concatenate(
            (np.array(token_ids_0), np.array(token_ids_1)), axis=1
        ).tolist()

    def truncate_sequences(
        self,
        ids: List[int],
        pair_ids: Optional[List[int]] = None,
        num_tokens_to_remove: int = 0,
        truncation_strategy: Union[str, TruncationStrategy] = "longest_first",
        stride: int = 0,
    ) -> Tuple[List[int], List[int], List[int]]:
        """
        Truncates a sequence pair in-place following the strategy.
        Args:
            ids (`List[int]`):
                Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
                `convert_tokens_to_ids` methods.
            pair_ids (`List[int]`, *optional*):
                Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
                and `convert_tokens_to_ids` methods.
            num_tokens_to_remove (`int`, *optional*, defaults to 0):
                Number of tokens to remove using the truncation strategy.
            truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
                The strategy to follow for truncation. Can be:
                - `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
                  maximum acceptable input length for the model if that argument is not provided. This will truncate
                  token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a
                  batch of pairs) is provided.
                - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
                  maximum acceptable input length for the model if that argument is not provided. This will only
                  truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
                - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
                  maximum acceptable input length for the model if that argument is not provided. This will only
                  truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
                - `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater
                  than the model maximum admissible input size).
            stride (`int`, *optional*, defaults to 0):
                If set to a positive number, the overflowing tokens returned will contain some tokens from the main
                sequence returned. The value of this argument defines the number of additional tokens.
        Returns:
            `Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of
            overflowing tokens. Note: The *longest_first* strategy returns empty list of overflowing tokens if a pair
            of sequences (or a batch of pairs) is provided.
        """
        if num_tokens_to_remove <= 0:
            return ids, pair_ids, []

        if not isinstance(truncation_strategy, TruncationStrategy):
            truncation_strategy = TruncationStrategy(truncation_strategy)

        overflowing_tokens = []
        if truncation_strategy == TruncationStrategy.ONLY_FIRST or (
            truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is None
        ):
            ids = np.array(ids)

            # PHA: I think we only truncate with longest first
            if ids.shape[1] > num_tokens_to_remove:
                window_len = min(ids.shape[1], stride + num_tokens_to_remove)
                if self.truncation_side == "left":
                    overflowing_tokens = ids[:, :window_len]
                    ids = ids[:, num_tokens_to_remove:]
                elif self.truncation_side == "right":
                    overflowing_tokens = ids[-window_len:]
                    ids = ids[:, :-num_tokens_to_remove]
                else:
                    raise ValueError(
                        f"invalid truncation strategy: {self.truncation_side}, use 'left' or 'right'."
                    )

                ids = ids.tolist()

            else:
                error_msg = (
                    f"We need to remove {num_tokens_to_remove} to truncate the input "
                    f"but the first sequence has a length {len(ids)}. "
                )
                if truncation_strategy == TruncationStrategy.ONLY_FIRST:
                    error_msg = (
                        error_msg + "Please select another truncation strategy than "
                        f"{truncation_strategy}, for instance 'longest_first' or 'only_second'."
                    )
                logger.error(error_msg)
        elif truncation_strategy == TruncationStrategy.LONGEST_FIRST:
            logger.warning(
                "Be aware, overflowing tokens are not returned for the setting you have chosen,"
                f" i.e. sequence pairs with the '{TruncationStrategy.LONGEST_FIRST.value}' "
                "truncation strategy. So the returned list will always be empty even if some "
                "tokens have been removed."
            )
            ids = np.array(ids)
            pair_ids = np.array(pair_ids)

            for _ in range(num_tokens_to_remove):
                if pair_ids is None or ids.shape[1] > pair_ids.shape[1]:
                    if self.truncation_side == "right":
                        ids = ids[:, :-1]
                    elif self.truncation_side == "left":
                        ids = ids[:, 1:]
                    else:
                        raise ValueError(
                            "invalid truncation strategy:" + str(self.truncation_side)
                        )
                else:
                    if self.truncation_side == "right":
                        pair_ids = pair_ids[:, :-1]
                    elif self.truncation_side == "left":
                        pair_ids = pair_ids[:, 1:]
                    else:
                        raise ValueError(
                            "invalid truncation strategy:" + str(self.truncation_side)
                        )

            ids = ids.tolist()
            pair_ids = pair_ids.tolist()

        elif (
            truncation_strategy == TruncationStrategy.ONLY_SECOND
            and pair_ids is not None
        ):
            raise NotImplementedError(
                "PHA: I think we only truncate with longest first"
            )
            if len(pair_ids) > num_tokens_to_remove:
                window_len = min(len(pair_ids), stride + num_tokens_to_remove)
                if self.truncation_side == "right":
                    overflowing_tokens = pair_ids[-window_len:]
                    pair_ids = pair_ids[:-num_tokens_to_remove]
                elif self.truncation_side == "left":
                    overflowing_tokens = pair_ids[:window_len]
                    pair_ids = pair_ids[num_tokens_to_remove:]
                else:
                    raise ValueError(
                        "invalid truncation strategy:" + str(self.truncation_side)
                    )
            else:
                logger.error(
                    f"We need to remove {num_tokens_to_remove} to truncate the input "
                    f"but the second sequence has a length {len(pair_ids)}. "
                    f"Please select another truncation strategy than {truncation_strategy}, "
                    "for instance 'longest_first' or 'only_first'."
                )

        return (ids, pair_ids, overflowing_tokens)

    def _token_to_n_order(self, token: str) -> int:
        """Get N-gram order for a token"""
        for n_gram, word2idx in self._ngram2word2idx.items():
            if token in word2idx:
                return n_gram

        return 0

    def create_weight_tensor(self) -> torch.Tensor:
        unked_freqs = self._frequencies.most_common()

        t = torch.ones(len(self))

        for token, freq in unked_freqs:
            t[self._ngram2word2idx[self._token_to_n_order(token)][token]] = freq

        # Ensure the only whitespace character is weighted
        t[self._ngram2word2idx[1][" "]] = 1.0

        normed_weights = torch.tensor([(1 - (x / (max(t) + 1))).item() for x in t])

        marker_tokens = [self.get_idx("<unk>", n) for n in range(1, self.ngram + 1)]
        marker_tokens.extend(
            [self.get_idx("<start>", n) for n in range(1, self.ngram + 1)]
        )
        # Instead of explicit ignore indexes, we use the weight vector and set target idxs to 0
        for marker in marker_tokens:
            normed_weights[marker] = 0

        return normed_weights


class TestTokenizer(unittest.TestCase):
    def test_one(self):
        vocab_file = "/home/phmaker/Projects/ngme/vocabs/1-gram-babylm.json"

        t = NGMETokenizer(vocab_file)
        self.assertEqual(t.get_idx("<unk>", 1), 1)

        result = t("hello world")
        self.assertEqual(result.input_ids, [16, 3, 11, 11, 8, 2, 21, 8, 9, 11, 12])

        result = t("<unk>")
        self.assertEqual(result.input_ids, [1, 13, 5, 24, 1])

        result = t(["hello world", "<unk>"])
        self.assertEqual(
            result.input_ids,
            [[16, 3, 11, 11, 8, 2, 21, 8, 9, 11, 12], [1, 13, 5, 24, 1]],
        )

    def test_three(self):
        vocab_file = "/home/phmaker/Projects/ngme/vocabs/3-gram-babylm.json"

        t = NGMETokenizer(vocab_file)

        result = t("hello world")
        self.assertEqual(result.input_ids, [16, 3, 11, 11, 8, 2, 21, 8, 9, 11, 12])

        result = t("hello", return_ngram_sequences=True)

        result = t(["hello world"], return_ngram_sequences=True)
        two_gram_expected = [[16, 208, 229, 230, 231, 1, 1, 312, 257, 499, 306]]

        self.assertEqual(result["gram_2_sequence"], two_gram_expected)
        self.assertEqual(t._ngram2idx2word[1][16], "h")
        self.assertEqual(t._ngram2idx2word[2][208], "he")
        self.assertEqual(t._ngram2idx2word[2][229], "el")

    def test_unks(self):
        vocab_file = "/home/phmaker/Projects/ngme/vocabs/2-gram-wiki-en.json"
        t = NGMETokenizer(vocab_file)
        result = t("OciVDjöShG", return_ngram_sequences=True, return_tensors="pt")

    def test_decode(self):
        vocab_file = "/home/phmaker/Projects/ngme/vocabs/3-gram-babylm.json"
        t = NGMETokenizer(vocab_file)
        decoded = t.decode(208)
        assert decoded == "he"

    def test_padding(self):
        vocab_file = "/home/phmaker/Projects/ngme/vocabs/3-gram-babylm.json"
        t = NGMETokenizer(vocab_file)
        result = t(
            "hello world",
            return_tensors="pt",
            padding="max_length",
            max_length=20,
            return_ngram_sequences=True,
        )

        self.assertEqual(result.input_ids.shape, (1, 20))
        self.assertEqual(result.gram_2_sequence.shape, (1, 20))
        self.assertEqual(result.gram_3_sequence.shape, (1, 20))

    def test_truncation(self):
        vocab_file = "/home/phmaker/Projects/ngme/vocabs/3-gram-babylm.json"
        t = NGMETokenizer(vocab_file)

        result = t(
            "hello world",
            return_tensors="pt",
            truncation=True,
            max_length=5,
            return_ngram_sequences=True,
        )
        self.assertEqual(result.input_ids.shape, (1, 5))
        self.assertEqual(result.gram_2_sequence.shape, (1, 5))

    def test_padding_and_truncation(self):
        vocab_file = "/home/phmaker/Projects/ngme/vocabs/3-gram-babylm.json"
        t = NGMETokenizer(vocab_file)

        result = t(
            ["four", "something longer"],
            return_tensors="pt",
            padding="max_length",
            truncation=True,
            max_length=5,
            return_ngram_sequences=True,
        )
        self.assertEqual(result.input_ids.shape, (2, 5))
        self.assertEqual(result.gram_2_sequence.shape, (2, 5))


if __name__ == "__main__":
    unittest.main()