pp_distilbert_ft_emotions

This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1493
  • Accuracy: 0.9275

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 80
  • eval_batch_size: 80
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.25 50 0.7329 0.758
No log 0.5 100 0.2915 0.9195
No log 0.75 150 0.2150 0.927
No log 1.0 200 0.1780 0.9285
No log 1.25 250 0.1777 0.9295
No log 1.5 300 0.1547 0.937
No log 1.75 350 0.1467 0.935
No log 2.0 400 0.1446 0.937
No log 2.25 450 0.1482 0.934
0.3073 2.5 500 0.1335 0.9385
0.3073 2.75 550 0.1344 0.9415
0.3073 3.0 600 0.1229 0.9425
0.3073 3.25 650 0.1381 0.939
0.3073 3.5 700 0.1292 0.941
0.3073 3.75 750 0.1278 0.944
0.3073 4.0 800 0.1258 0.944

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
8
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Parth1612/pp_distilbert_ft_emotions

Finetuned
(7161)
this model

Dataset used to train Parth1612/pp_distilbert_ft_emotions

Evaluation results