t5_clinical_SA
This model is a fine-tuned version of luqh/ClinicalT5-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4740
- Rouge1: 0.2395
- Rouge2: 0.0748
- Rougel: 0.2314
- Rougelsum: 0.2315
- Gen Len: 10.3363
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
2.1954 | 1.0 | 527 | 0.5438 | 0.0035 | 0.0 | 0.0035 | 0.0035 | 0.1504 |
0.5373 | 2.0 | 1054 | 0.5078 | 0.1198 | 0.0337 | 0.1153 | 0.1155 | 11.0796 |
0.5116 | 3.0 | 1581 | 0.4901 | 0.1741 | 0.0618 | 0.1682 | 0.1709 | 11.6549 |
0.4576 | 4.0 | 2108 | 0.4798 | 0.1725 | 0.0576 | 0.1698 | 0.1728 | 12.1416 |
0.4626 | 5.0 | 2635 | 0.4758 | 0.2184 | 0.0723 | 0.2133 | 0.215 | 10.4867 |
0.435 | 6.0 | 3162 | 0.4765 | 0.2343 | 0.0796 | 0.2234 | 0.2245 | 10.6195 |
0.4018 | 7.0 | 3689 | 0.4746 | 0.2281 | 0.0765 | 0.2199 | 0.2206 | 10.0442 |
0.4046 | 8.0 | 4216 | 0.4711 | 0.2452 | 0.0769 | 0.2317 | 0.2329 | 11.0531 |
0.4128 | 9.0 | 4743 | 0.4726 | 0.2358 | 0.0712 | 0.2269 | 0.2276 | 10.6106 |
0.3885 | 10.0 | 5270 | 0.4734 | 0.2362 | 0.0719 | 0.2281 | 0.2284 | 10.5664 |
0.4003 | 11.0 | 5797 | 0.4738 | 0.243 | 0.08 | 0.235 | 0.2351 | 10.2655 |
0.362 | 12.0 | 6324 | 0.4740 | 0.2395 | 0.0748 | 0.2314 | 0.2315 | 10.3363 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
- Downloads last month
- 23
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.