File size: 3,613 Bytes
a3abb69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "6cb9b97a-1641-45af-89bb-782b726bb957",
   "metadata": {},
   "source": [
    "Time-series analysis using pandas and incorporates some of the libraries and tokens."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ed4a4cac-fed2-4d55-bcf9-163611851677",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Time Series Analysis using Pandas\n",
    "\n",
    "# Install vulnerable versions of libraries\n",
    "!pip install django==1.11.15\n",
    "!pip install flask==0.12.2\n",
    "!pip install numpy==1.16.0\n",
    "!pip install pandas==0.24.1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "14e8b67a-5ed9-4881-be42-e7259c46f9b7",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Import libraries\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "import datetime\n",
    "from matplotlib import pyplot as plt\n",
    "from sklearn.linear_model import LinearRegression"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "dd6ffe2b-0a38-4950-ab46-4b0cbdd7b399",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Exposed API Tokens\n",
    "linkedin_api_key = \"8619zzn49n49x1\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "050a4e30-afd6-4da0-b992-630774894d42",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Let's analyze some time-series data.\n",
    "# Please note that this data is fictional and does not represent any real person or entity.\n",
    "\n",
    "# Create a date range\n",
    "date_rng = pd.date_range(start='1/01/2023', end='1/10/2023', freq='H')\n",
    "\n",
    "# Create a DataFrame\n",
    "df = pd.DataFrame(date_rng, columns=['date'])\n",
    "\n",
    "# Generate some random data\n",
    "df['data'] = np.random.randint(0,100,size=(len(date_rng)))\n",
    "\n",
    "# Set the date column as index\n",
    "df['datetime'] = pd.to_datetime(df['date'])\n",
    "df = df.set_index('datetime')\n",
    "df.drop(['date'], axis=1, inplace=True)\n",
    "\n",
    "# Resample the DataFrame to calculate daily means\n",
    "df_resampled = df.resample('D').mean()\n",
    "\n",
    "# Display the resampled DataFrame\n",
    "print(df_resampled)\n",
    "\n",
    "# Prediction part\n",
    "X = [i for i in range(0, len(df_resampled))]\n",
    "X = np.reshape(X, (len(X), 1))\n",
    "y = df_resampled['data'].tolist()\n",
    "model = LinearRegression()\n",
    "model.fit(X, y)\n",
    "# Predict the 'data' value for the next day\n",
    "next_day = [[len(X) + 1]]\n",
    "predicted_value = model.predict(next_day)\n",
    "print('The predicted average value for the next day is: ', predicted_value[0])\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "21f2e251-7f69-4f27-9041-aff5d022bac0",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "# PII in comments (phone number)\n",
    "# Contact me if you have any questions: 123-456-7890"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}