File size: 4,433 Bytes
a3abb69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "a06300a0-6379-4cb8-b015-0e6e689ab64a",
   "metadata": {},
   "source": [
    "This Jupyter notebook script sets up a basic prediction model while intentionally incorporating different types of potential vulnerabilities including usage of older version of a library, hardcoded secrets, and PII."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a4e7e5b2-3c14-44fb-808f-7241b2e75658",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Cell 1: (Forcing an installation of an older version of libraries)\n",
    "\n",
    "!pip install numpy==1.16.0\n",
    "!pip install scikit-learn==0.19.0  # vulnerable version of scikit-learn"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d8f3c422-d9e6-497a-a7b2-ec91fee80fa4",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Cell 2: (Importing libraries including the one with older version)\n",
    "\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "import sklearn\n",
    "from sklearn.model_selection import train_test_split\n",
    "from sklearn.linear_model import LinearRegression"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3fc98c03-cc4c-4a3b-a5d9-41523c26930f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Including a non-permissible licensed library\n",
    "import oct2py"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bb7a28c5-ac7f-4574-990d-d25c7670f211",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Cell 3: (API tokens and secrets)\n",
    "azure_access_key = \"Eby8vdM02xNOcqFlqUwJPLlmEtlCDXJ1OUzFT50uSRZ6IFsuFq2UVErCz4I6tq/K1SZFPTOtr/KBHBeksoGMGw==\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "dd875b59-7454-4c81-88c2-37cf011ed332",
   "metadata": {},
   "outputs": [],
   "source": [
    "gcloud_api_key = \"AIzaQwerty12345678Xx\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "87d8ed66-bb6d-46b1-9968-b7d5b2cf49df",
   "metadata": {},
   "outputs": [],
   "source": [
    "youtube_api_key = \"AIzaSyCewf3U1ZXHH4E2mK2s8A2D\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f2bae80c-9132-4931-8182-fafbe4a414a1",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Dummy PII Data\n",
    "person = {\n",
    "    'first_name': 'John',\n",
    "    'last_name': 'Doe',\n",
    "    'ssn': '123-45-6789',\n",
    "    'address': '1600 Amphitheatre Parkway, Mountain View, CA'\n",
    "}  # this could be seen as PII"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0ff71e14-4cf7-47f8-be2f-7a2f93d7900a",
   "metadata": {},
   "outputs": [],
   "source": [
    "USER_NAME = 'Joe Smith'  #another PII in another format"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9a21aa9d-96ec-4555-9d1a-fa0f2cd39802",
   "metadata": {},
   "outputs": [],
   "source": [
    "EMAIL = 'john.doe@example.com'  # also PII"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fb202b7d-a7ef-4d6e-89ec-6e5aa01422d0",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Cell 4: (Model building)\n",
    "\n",
    "# Creating a dataset\n",
    "np.random.seed(0)\n",
    "x = np.random.rand(100, 1)\n",
    "y = 2 + 3 * x + np.random.rand(100, 1)\n",
    "\n",
    "# Splitting the data\n",
    "x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)\n",
    "\n",
    "# Model initialization\n",
    "regression_model = LinearRegression()\n",
    "\n",
    "# Fit the data(train the model)\n",
    "regression_model.fit(x_train, y_train)\n",
    "\n",
    "# Predict\n",
    "y_predicted = regression_model.predict(x_test)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}